d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22×C52 | 208 | C2^2xC52 | 208,45 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C52)⋊1C2 = D26⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | (C2xC52):1C2 | 208,14 | |
(C2×C52)⋊2C2 = C13×C22⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | (C2xC52):2C2 | 208,21 | |
(C2×C52)⋊3C2 = C2×D52 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | (C2xC52):3C2 | 208,37 | |
(C2×C52)⋊4C2 = D52⋊5C2 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52):4C2 | 208,38 |
(C2×C52)⋊5C2 = C2×C4×D13 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | (C2xC52):5C2 | 208,36 | |
(C2×C52)⋊6C2 = D4×C26 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | (C2xC52):6C2 | 208,46 | |
(C2×C52)⋊7C2 = C13×C4○D4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52):7C2 | 208,48 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C52).1C2 = C26.D4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).1C2 | 208,12 | |
(C2×C52).2C2 = C13×C4⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).2C2 | 208,22 | |
(C2×C52).3C2 = C52⋊3C4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).3C2 | 208,13 | |
(C2×C52).4C2 = C2×Dic26 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).4C2 | 208,35 | |
(C2×C52).5C2 = C52.4C4 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52).5C2 | 208,10 |
(C2×C52).6C2 = C2×C13⋊2C8 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).6C2 | 208,9 | |
(C2×C52).7C2 = C4×Dic13 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).7C2 | 208,11 | |
(C2×C52).8C2 = C13×M4(2) | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52).8C2 | 208,24 |
(C2×C52).9C2 = Q8×C26 | φ: C2/C1 → C2 ⊆ Aut C2×C52 | 208 | (C2xC52).9C2 | 208,47 |