Copied to
clipboard

G = C2×D52order 208 = 24·13

Direct product of C2 and D52

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D52, C42D26, C261D4, C522C22, D261C22, C26.3C23, C22.10D26, C131(C2×D4), (C2×C52)⋊3C2, (C2×C4)⋊2D13, (C22×D13)⋊1C2, C2.4(C22×D13), (C2×C26).10C22, SmallGroup(208,37)

Series: Derived Chief Lower central Upper central

C1C26 — C2×D52
C1C13C26D26C22×D13 — C2×D52
C13C26 — C2×D52
C1C22C2×C4

Generators and relations for C2×D52
 G = < a,b,c | a2=b52=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 394 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C13, C2×D4, D13, C26, C26, C52, D26, D26, C2×C26, D52, C2×C52, C22×D13, C2×D52
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, D26, D52, C22×D13, C2×D52

Smallest permutation representation of C2×D52
On 104 points
Generators in S104
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)(43 78)(44 79)(45 80)(46 81)(47 82)(48 83)(49 84)(50 85)(51 86)(52 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(71 104)(72 103)(73 102)(74 101)(75 100)(76 99)(77 98)(78 97)(79 96)(80 95)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)

G:=sub<Sym(104)| (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,85)(51,86)(52,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(71,104)(72,103)(73,102)(74,101)(75,100)(76,99)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)>;

G:=Group( (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,85)(51,86)(52,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(71,104)(72,103)(73,102)(74,101)(75,100)(76,99)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88) );

G=PermutationGroup([[(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77),(43,78),(44,79),(45,80),(46,81),(47,82),(48,83),(49,84),(50,85),(51,86),(52,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(71,104),(72,103),(73,102),(74,101),(75,100),(76,99),(77,98),(78,97),(79,96),(80,95),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88)]])

C2×D52 is a maximal subgroup of
D526C4  D525C4  C52.46D4  D26.D4  C4⋊D52  C4.D52  C22⋊D52  D26⋊D4  D528C4  D26.13D4  C42D52  C8⋊D26  C527D4  C52⋊D4  C52.23D4  D4⋊D26  C2×D4×D13  D48D26
C2×D52 is a maximal quotient of
C522Q8  C4⋊D52  C4.D52  C22⋊D52  C22.D52  C42D52  D262Q8  D1047C2  C8⋊D26  C8.D26  C527D4

58 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B13A···13F26A···26R52A···52X
order122222224413···1326···2652···52
size111126262626222···22···22···2

58 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D13D26D26D52
kernelC2×D52D52C2×C52C22×D13C26C2×C4C4C22C2
# reps14122612624

Matrix representation of C2×D52 in GL4(𝔽53) generated by

52000
05200
0010
0001
,
361000
02800
003338
00045
,
15100
413800
002718
004226
G:=sub<GL(4,GF(53))| [52,0,0,0,0,52,0,0,0,0,1,0,0,0,0,1],[36,0,0,0,10,28,0,0,0,0,33,0,0,0,38,45],[15,41,0,0,1,38,0,0,0,0,27,42,0,0,18,26] >;

C2×D52 in GAP, Magma, Sage, TeX

C_2\times D_{52}
% in TeX

G:=Group("C2xD52");
// GroupNames label

G:=SmallGroup(208,37);
// by ID

G=gap.SmallGroup(208,37);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,182,42,4804]);
// Polycyclic

G:=Group<a,b,c|a^2=b^52=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽