metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C52.4C4, C4.Dic13, C4.15D26, C13⋊4M4(2), C22.Dic13, C52.15C22, C13⋊2C8⋊5C2, (C2×C26).5C4, (C2×C52).5C2, (C2×C4).2D13, C26.14(C2×C4), C2.3(C2×Dic13), SmallGroup(208,10)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C26 — C52 — C13⋊2C8 — C52.4C4 |
Generators and relations for C52.4C4
G = < a,b | a52=1, b4=a26, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 72 14 59 27 98 40 85)(2 71 15 58 28 97 41 84)(3 70 16 57 29 96 42 83)(4 69 17 56 30 95 43 82)(5 68 18 55 31 94 44 81)(6 67 19 54 32 93 45 80)(7 66 20 53 33 92 46 79)(8 65 21 104 34 91 47 78)(9 64 22 103 35 90 48 77)(10 63 23 102 36 89 49 76)(11 62 24 101 37 88 50 75)(12 61 25 100 38 87 51 74)(13 60 26 99 39 86 52 73)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,72,14,59,27,98,40,85)(2,71,15,58,28,97,41,84)(3,70,16,57,29,96,42,83)(4,69,17,56,30,95,43,82)(5,68,18,55,31,94,44,81)(6,67,19,54,32,93,45,80)(7,66,20,53,33,92,46,79)(8,65,21,104,34,91,47,78)(9,64,22,103,35,90,48,77)(10,63,23,102,36,89,49,76)(11,62,24,101,37,88,50,75)(12,61,25,100,38,87,51,74)(13,60,26,99,39,86,52,73)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,72,14,59,27,98,40,85)(2,71,15,58,28,97,41,84)(3,70,16,57,29,96,42,83)(4,69,17,56,30,95,43,82)(5,68,18,55,31,94,44,81)(6,67,19,54,32,93,45,80)(7,66,20,53,33,92,46,79)(8,65,21,104,34,91,47,78)(9,64,22,103,35,90,48,77)(10,63,23,102,36,89,49,76)(11,62,24,101,37,88,50,75)(12,61,25,100,38,87,51,74)(13,60,26,99,39,86,52,73) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,72,14,59,27,98,40,85),(2,71,15,58,28,97,41,84),(3,70,16,57,29,96,42,83),(4,69,17,56,30,95,43,82),(5,68,18,55,31,94,44,81),(6,67,19,54,32,93,45,80),(7,66,20,53,33,92,46,79),(8,65,21,104,34,91,47,78),(9,64,22,103,35,90,48,77),(10,63,23,102,36,89,49,76),(11,62,24,101,37,88,50,75),(12,61,25,100,38,87,51,74),(13,60,26,99,39,86,52,73)]])
C52.4C4 is a maximal subgroup of
D52⋊4C4 C104.6C4 C52.53D4 C52.46D4 C4.12D52 C52.D4 C52.10D4 C52.56D4 D52.3C4 M4(2)×D13 D52⋊6C22 Q8.D26 D4.Dic13 D4⋊D26 D4.9D26
C52.4C4 is a maximal quotient of
C26.7C42 C52⋊3C8 C52.55D4
58 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 8A | 8B | 8C | 8D | 13A | ··· | 13F | 26A | ··· | 26R | 52A | ··· | 52X |
order | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 26 | 26 | 26 | 26 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
58 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | M4(2) | D13 | Dic13 | D26 | Dic13 | C52.4C4 |
kernel | C52.4C4 | C13⋊2C8 | C2×C52 | C52 | C2×C26 | C13 | C2×C4 | C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 24 |
Matrix representation of C52.4C4 ►in GL2(𝔽313) generated by
162 | 0 |
74 | 114 |
32 | 30 |
205 | 281 |
G:=sub<GL(2,GF(313))| [162,74,0,114],[32,205,30,281] >;
C52.4C4 in GAP, Magma, Sage, TeX
C_{52}._4C_4
% in TeX
G:=Group("C52.4C4");
// GroupNames label
G:=SmallGroup(208,10);
// by ID
G=gap.SmallGroup(208,10);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-13,20,101,42,4804]);
// Polycyclic
G:=Group<a,b|a^52=1,b^4=a^26,b*a*b^-1=a^-1>;
// generators/relations
Export