Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=C4

Direct product G=N×Q with N=C3×C3⋊S3 and Q=C4
dρLabelID
C12×C3⋊S372C12xC3:S3216,141

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊1C4 = C3×C6.D6φ: C4/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):1C4216,120
(C3×C3⋊S3)⋊2C4 = C6×C32⋊C4φ: C4/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):2C4216,168
(C3×C3⋊S3)⋊3C4 = Dic3×C3⋊S3φ: C4/C2C2 ⊆ Out C3×C3⋊S372(C3xC3:S3):3C4216,125
(C3×C3⋊S3)⋊4C4 = C339(C2×C4)φ: C4/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):4C4216,131
(C3×C3⋊S3)⋊5C4 = C2×C33⋊C4φ: C4/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):5C4216,169

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1C4 = C3×F9φ: C4/C1C4 ⊆ Out C3×C3⋊S3248(C3xC3:S3).1C4216,154
(C3×C3⋊S3).2C4 = C3⋊F9φ: C4/C1C4 ⊆ Out C3×C3⋊S3248(C3xC3:S3).2C4216,155

׿
×
𝔽