Copied to
clipboard

G = Dic3xC3:S3order 216 = 23·33

Direct product of Dic3 and C3:S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic3xC3:S3, C6.10S32, C33:7(C2xC4), C32:6(C4xS3), C3:1(S3xDic3), (C3xC6).44D6, C33:5C4:2C2, (C3xDic3):2S3, C32:8(C2xDic3), (C32xDic3):5C2, (C32xC6).7C22, C3:3(C4xC3:S3), (C3xC3:S3):3C4, C2.2(S3xC3:S3), C6.2(C2xC3:S3), (C6xC3:S3).2C2, (C2xC3:S3).4S3, SmallGroup(216,125)

Series: Derived Chief Lower central Upper central

C1C33 — Dic3xC3:S3
C1C3C32C33C32xC6C32xDic3 — Dic3xC3:S3
C33 — Dic3xC3:S3
C1C2

Generators and relations for Dic3xC3:S3
 G = < a,b,c,d,e | a6=c3=d3=e2=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 484 in 120 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C2xC4, C32, C32, C32, Dic3, Dic3, C12, D6, C2xC6, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, C4xS3, C2xDic3, C33, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, C3xC3:S3, C32xC6, S3xDic3, C4xC3:S3, C32xDic3, C33:5C4, C6xC3:S3, Dic3xC3:S3
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, C3:S3, C4xS3, C2xDic3, S32, C2xC3:S3, S3xDic3, C4xC3:S3, S3xC3:S3, Dic3xC3:S3

Smallest permutation representation of Dic3xC3:S3
On 72 points
Generators in S72
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 52 4 49)(2 51 5 54)(3 50 6 53)(7 42 10 39)(8 41 11 38)(9 40 12 37)(13 46 16 43)(14 45 17 48)(15 44 18 47)(19 59 22 56)(20 58 23 55)(21 57 24 60)(25 65 28 62)(26 64 29 61)(27 63 30 66)(31 68 34 71)(32 67 35 70)(33 72 36 69)
(1 19 15)(2 20 16)(3 21 17)(4 22 18)(5 23 13)(6 24 14)(7 67 65)(8 68 66)(9 69 61)(10 70 62)(11 71 63)(12 72 64)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(29 37 36)(30 38 31)(43 51 58)(44 52 59)(45 53 60)(46 54 55)(47 49 56)(48 50 57)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 27 29)(26 28 30)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)(49 51 53)(50 52 54)(55 57 59)(56 58 60)(61 65 63)(62 66 64)(67 71 69)(68 72 70)
(1 35)(2 36)(3 31)(4 32)(5 33)(6 34)(7 56)(8 57)(9 58)(10 59)(11 60)(12 55)(13 26)(14 27)(15 28)(16 29)(17 30)(18 25)(19 42)(20 37)(21 38)(22 39)(23 40)(24 41)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)

G:=sub<Sym(72)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,52,4,49)(2,51,5,54)(3,50,6,53)(7,42,10,39)(8,41,11,38)(9,40,12,37)(13,46,16,43)(14,45,17,48)(15,44,18,47)(19,59,22,56)(20,58,23,55)(21,57,24,60)(25,65,28,62)(26,64,29,61)(27,63,30,66)(31,68,34,71)(32,67,35,70)(33,72,36,69), (1,19,15)(2,20,16)(3,21,17)(4,22,18)(5,23,13)(6,24,14)(7,67,65)(8,68,66)(9,69,61)(10,70,62)(11,71,63)(12,72,64)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(29,37,36)(30,38,31)(43,51,58)(44,52,59)(45,53,60)(46,54,55)(47,49,56)(48,50,57), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,57,59)(56,58,60)(61,65,63)(62,66,64)(67,71,69)(68,72,70), (1,35)(2,36)(3,31)(4,32)(5,33)(6,34)(7,56)(8,57)(9,58)(10,59)(11,60)(12,55)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(19,42)(20,37)(21,38)(22,39)(23,40)(24,41)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,52,4,49)(2,51,5,54)(3,50,6,53)(7,42,10,39)(8,41,11,38)(9,40,12,37)(13,46,16,43)(14,45,17,48)(15,44,18,47)(19,59,22,56)(20,58,23,55)(21,57,24,60)(25,65,28,62)(26,64,29,61)(27,63,30,66)(31,68,34,71)(32,67,35,70)(33,72,36,69), (1,19,15)(2,20,16)(3,21,17)(4,22,18)(5,23,13)(6,24,14)(7,67,65)(8,68,66)(9,69,61)(10,70,62)(11,71,63)(12,72,64)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(29,37,36)(30,38,31)(43,51,58)(44,52,59)(45,53,60)(46,54,55)(47,49,56)(48,50,57), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,57,59)(56,58,60)(61,65,63)(62,66,64)(67,71,69)(68,72,70), (1,35)(2,36)(3,31)(4,32)(5,33)(6,34)(7,56)(8,57)(9,58)(10,59)(11,60)(12,55)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(19,42)(20,37)(21,38)(22,39)(23,40)(24,41)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,52,4,49),(2,51,5,54),(3,50,6,53),(7,42,10,39),(8,41,11,38),(9,40,12,37),(13,46,16,43),(14,45,17,48),(15,44,18,47),(19,59,22,56),(20,58,23,55),(21,57,24,60),(25,65,28,62),(26,64,29,61),(27,63,30,66),(31,68,34,71),(32,67,35,70),(33,72,36,69)], [(1,19,15),(2,20,16),(3,21,17),(4,22,18),(5,23,13),(6,24,14),(7,67,65),(8,68,66),(9,69,61),(10,70,62),(11,71,63),(12,72,64),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(29,37,36),(30,38,31),(43,51,58),(44,52,59),(45,53,60),(46,54,55),(47,49,56),(48,50,57)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,27,29),(26,28,30),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48),(49,51,53),(50,52,54),(55,57,59),(56,58,60),(61,65,63),(62,66,64),(67,71,69),(68,72,70)], [(1,35),(2,36),(3,31),(4,32),(5,33),(6,34),(7,56),(8,57),(9,58),(10,59),(11,60),(12,55),(13,26),(14,27),(15,28),(16,29),(17,30),(18,25),(19,42),(20,37),(21,38),(22,39),(23,40),(24,41),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)]])

Dic3xC3:S3 is a maximal subgroup of
C33:(C4:C4)  S32xDic3  Dic3:6S32  D6:S32  C33:5(C2xQ8)  D6.S32  D6.6S32  C12.39S32  C12.57S32  C4xS3xC3:S3  C62.91D6  C62.93D6
Dic3xC3:S3 is a maximal quotient of
C33:8M4(2)  C62.78D6  C62.82D6

36 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I4A4B4C4D6A···6E6F6G6H6I6J6K12A···12H
order12223···3333344446···666666612···12
size11992···244443327272···2444418186···6

36 irreducible representations

dim111112222244
type++++++-++-
imageC1C2C2C2C4S3S3Dic3D6C4xS3S32S3xDic3
kernelDic3xC3:S3C32xDic3C33:5C4C6xC3:S3C3xC3:S3C3xDic3C2xC3:S3C3:S3C3xC6C32C6C3
# reps111144125844

Matrix representation of Dic3xC3:S3 in GL6(F13)

100000
010000
001000
000100
000001
0000121
,
100000
010000
0012000
0001200
000008
000080
,
300000
490000
001000
000100
000010
000001
,
100000
010000
0012100
0012000
000010
000001
,
1250000
010000
0001200
0012000
0000120
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,8,0],[3,4,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,5,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

Dic3xC3:S3 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_3\rtimes S_3
% in TeX

G:=Group("Dic3xC3:S3");
// GroupNames label

G:=SmallGroup(216,125);
// by ID

G=gap.SmallGroup(216,125);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,201,730,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=c^3=d^3=e^2=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<