Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC2xC6

Direct product G=NxQ with N=C3 and Q=S3xC2xC6
dρLabelID
S3xC6272S3xC6^2216,174

Semidirect products G=N:Q with N=C3 and Q=S3xC2xC6
extensionφ:Q→Aut NdρLabelID
C3:1(S3xC2xC6) = S32xC6φ: S3xC2xC6/S3xC6C2 ⊆ Aut C3244C3:1(S3xC2xC6)216,170
C3:2(S3xC2xC6) = C2xC6xC3:S3φ: S3xC2xC6/C62C2 ⊆ Aut C372C3:2(S3xC2xC6)216,175

Non-split extensions G=N.Q with N=C3 and Q=S3xC2xC6
extensionφ:Q→Aut NdρLabelID
C3.1(S3xC2xC6) = C2xC6xD9φ: S3xC2xC6/C62C2 ⊆ Aut C372C3.1(S3xC2xC6)216,108
C3.2(S3xC2xC6) = C22xC32:C6φ: S3xC2xC6/C62C2 ⊆ Aut C336C3.2(S3xC2xC6)216,110
C3.3(S3xC2xC6) = C22xC9:C6φ: S3xC2xC6/C62C2 ⊆ Aut C336C3.3(S3xC2xC6)216,111
C3.4(S3xC2xC6) = S3xC2xC18central extension (φ=1)72C3.4(S3xC2xC6)216,109

׿
x
:
Z
F
o
wr
Q
<