Copied to
clipboard

## G = S3×C2×C18order 216 = 23·33

### Direct product of C2×C18 and S3

Series: Derived Chief Lower central Upper central

 Derived series C1 — C3 — S3×C2×C18
 Chief series C1 — C3 — C32 — C3×C9 — S3×C9 — S3×C18 — S3×C2×C18
 Lower central C3 — S3×C2×C18
 Upper central C1 — C2×C18

Generators and relations for S3×C2×C18
G = < a,b,c,d | a2=b18=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 182 in 106 conjugacy classes, 63 normal (15 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C9, C9, C32, D6, C2×C6, C2×C6, C18, C18, C3×S3, C3×C6, C22×S3, C22×C6, C3×C9, C2×C18, C2×C18, S3×C6, C62, S3×C9, C3×C18, C22×C18, S3×C2×C6, S3×C18, C6×C18, S3×C2×C18
Quotients: C1, C2, C3, C22, S3, C6, C23, C9, D6, C2×C6, C18, C3×S3, C22×S3, C22×C6, C2×C18, S3×C6, S3×C9, C22×C18, S3×C2×C6, S3×C18, S3×C2×C18

Smallest permutation representation of S3×C2×C18
On 72 points
Generators in S72
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 67 61)(56 68 62)(57 69 63)(58 70 64)(59 71 65)(60 72 66)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 37)(15 38)(16 39)(17 40)(18 41)(19 70)(20 71)(21 72)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)

G:=sub<Sym(72)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,67,61),(56,68,62),(57,69,63),(58,70,64),(59,71,65),(60,72,66)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,37),(15,38),(16,39),(17,40),(18,41),(19,70),(20,71),(21,72),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69)]])

S3×C2×C18 is a maximal subgroup of   D6⋊Dic9

108 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 3A 3B 3C 3D 3E 6A ··· 6F 6G ··· 6O 6P ··· 6W 9A ··· 9F 9G ··· 9L 18A ··· 18R 18S ··· 18AJ 18AK ··· 18BH order 1 2 2 2 2 2 2 2 3 3 3 3 3 6 ··· 6 6 ··· 6 6 ··· 6 9 ··· 9 9 ··· 9 18 ··· 18 18 ··· 18 18 ··· 18 size 1 1 1 1 3 3 3 3 1 1 2 2 2 1 ··· 1 2 ··· 2 3 ··· 3 1 ··· 1 2 ··· 2 1 ··· 1 2 ··· 2 3 ··· 3

108 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 type + + + + + image C1 C2 C2 C3 C6 C6 C9 C18 C18 S3 D6 C3×S3 S3×C6 S3×C9 S3×C18 kernel S3×C2×C18 S3×C18 C6×C18 S3×C2×C6 S3×C6 C62 C22×S3 D6 C2×C6 C2×C18 C18 C2×C6 C6 C22 C2 # reps 1 6 1 2 12 2 6 36 6 1 3 2 6 6 18

Matrix representation of S3×C2×C18 in GL3(𝔽19) generated by

 18 0 0 0 18 0 0 0 18
,
 3 0 0 0 17 0 0 0 17
,
 1 0 0 0 7 7 0 0 11
,
 18 0 0 0 1 0 0 6 18
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[3,0,0,0,17,0,0,0,17],[1,0,0,0,7,0,0,7,11],[18,0,0,0,1,6,0,0,18] >;

S3×C2×C18 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{18}
% in TeX

G:=Group("S3xC2xC18");
// GroupNames label

G:=SmallGroup(216,109);
// by ID

G=gap.SmallGroup(216,109);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,93,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^18=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽