Extensions 1→N→G→Q→1 with N=C10 and Q=C2xC10

Direct product G=NxQ with N=C10 and Q=C2xC10
dρLabelID
C2xC102200C2xC10^2200,52

Semidirect products G=N:Q with N=C10 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C10:(C2xC10) = D5xC2xC10φ: C2xC10/C10C2 ⊆ Aut C1040C10:(C2xC10)200,50

Non-split extensions G=N.Q with N=C10 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C10.1(C2xC10) = C5xDic10φ: C2xC10/C10C2 ⊆ Aut C10402C10.1(C2xC10)200,27
C10.2(C2xC10) = D5xC20φ: C2xC10/C10C2 ⊆ Aut C10402C10.2(C2xC10)200,28
C10.3(C2xC10) = C5xD20φ: C2xC10/C10C2 ⊆ Aut C10402C10.3(C2xC10)200,29
C10.4(C2xC10) = C10xDic5φ: C2xC10/C10C2 ⊆ Aut C1040C10.4(C2xC10)200,30
C10.5(C2xC10) = C5xC5:D4φ: C2xC10/C10C2 ⊆ Aut C10202C10.5(C2xC10)200,31
C10.6(C2xC10) = D4xC25central extension (φ=1)1002C10.6(C2xC10)200,10
C10.7(C2xC10) = Q8xC25central extension (φ=1)2002C10.7(C2xC10)200,11
C10.8(C2xC10) = D4xC52central extension (φ=1)100C10.8(C2xC10)200,38
C10.9(C2xC10) = Q8xC52central extension (φ=1)200C10.9(C2xC10)200,39

׿
x
:
Z
F
o
wr
Q
<