Copied to
clipboard

G = D5×C20order 200 = 23·52

Direct product of C20 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5×C20, C202C10, Dic52C10, D10.2C10, C10.18D10, C52(C2×C20), (C5×C20)⋊3C2, C529(C2×C4), C2.1(D5×C10), C10.2(C2×C10), (C5×Dic5)⋊5C2, (D5×C10).4C2, (C5×C10).7C22, SmallGroup(200,28)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C20
C1C5C10C5×C10D5×C10 — D5×C20
C5 — D5×C20
C1C20

Generators and relations for D5×C20
 G = < a,b,c | a20=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C2
2C5
2C5
5C4
5C22
2C10
2C10
5C10
5C10
5C2×C4
2C20
2C20
5C20
5C2×C10
5C2×C20

Smallest permutation representation of D5×C20
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 17 13 9 5)(2 18 14 10 6)(3 19 15 11 7)(4 20 16 12 8)(21 25 29 33 37)(22 26 30 34 38)(23 27 31 35 39)(24 28 32 36 40)
(1 37)(2 38)(3 39)(4 40)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,17,13,9,5),(2,18,14,10,6),(3,19,15,11,7),(4,20,16,12,8),(21,25,29,33,37),(22,26,30,34,38),(23,27,31,35,39),(24,28,32,36,40)], [(1,37),(2,38),(3,39),(4,40),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36)]])

D5×C20 is a maximal subgroup of   C20.30D10  C20.14F5  C20.12F5  C205F5  D205D5  D10.9D10  Dic105D5

80 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E···5N10A10B10C10D10E···10N10O···10V20A···20H20I···20AB20AC···20AJ
order1222444455555···51010101010···1010···1020···2020···2020···20
size1155115511112···211112···25···51···12···25···5

80 irreducible representations

dim1111111111222222
type++++++
imageC1C2C2C2C4C5C10C10C10C20D5D10C4×D5C5×D5D5×C10D5×C20
kernelD5×C20C5×Dic5C5×C20D5×C10C5×D5C4×D5Dic5C20D10D5C20C10C5C4C2C1
# reps111144444162248816

Matrix representation of D5×C20 in GL2(𝔽41) generated by

20
02
,
180
016
,
016
180
G:=sub<GL(2,GF(41))| [2,0,0,2],[18,0,0,16],[0,18,16,0] >;

D5×C20 in GAP, Magma, Sage, TeX

D_5\times C_{20}
% in TeX

G:=Group("D5xC20");
// GroupNames label

G:=SmallGroup(200,28);
// by ID

G=gap.SmallGroup(200,28);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-5,106,4004]);
// Polycyclic

G:=Group<a,b,c|a^20=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C20 in TeX

׿
×
𝔽