Copied to
clipboard

G = C5×D20order 200 = 23·52

Direct product of C5 and D20

direct product, metacyclic, supersoluble, monomial

Aliases: C5×D20, C203D5, C201C10, C524D4, D101C10, C10.19D10, C4⋊(C5×D5), C51(C5×D4), (C5×C20)⋊2C2, (D5×C10)⋊3C2, C2.4(D5×C10), C10.3(C2×C10), (C5×C10).8C22, SmallGroup(200,29)

Series: Derived Chief Lower central Upper central

C1C10 — C5×D20
C1C5C10C5×C10D5×C10 — C5×D20
C5C10 — C5×D20
C1C10C20

Generators and relations for C5×D20
 G = < a,b,c | a5=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >

10C2
10C2
2C5
2C5
5C22
5C22
2C10
2D5
2D5
2C10
10C10
10C10
5D4
2C20
2C20
5C2×C10
5C2×C10
2C5×D5
2C5×D5
5C5×D4

Smallest permutation representation of C5×D20
On 40 points
Generators in S40
(1 5 9 13 17)(2 6 10 14 18)(3 7 11 15 19)(4 8 12 16 20)(21 37 33 29 25)(22 38 34 30 26)(23 39 35 31 27)(24 40 36 32 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 40)(17 39)(18 38)(19 37)(20 36)

G:=sub<Sym(40)| (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,40)(17,39)(18,38)(19,37)(20,36)>;

G:=Group( (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,40)(17,39)(18,38)(19,37)(20,36) );

G=PermutationGroup([(1,5,9,13,17),(2,6,10,14,18),(3,7,11,15,19),(4,8,12,16,20),(21,37,33,29,25),(22,38,34,30,26),(23,39,35,31,27),(24,40,36,32,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,40),(17,39),(18,38),(19,37),(20,36)])

C5×D20 is a maximal subgroup of
C522D8  C5⋊D40  D20.D5  C523SD16  D205D5  D20⋊D5  C20⋊D10  C5×D4×D5

65 conjugacy classes

class 1 2A2B2C 4 5A5B5C5D5E···5N10A10B10C10D10E···10N10O···10V20A···20X
order1222455555···51010101010···1010···1020···20
size111010211112···211112···210···102···2

65 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C5C10C10D4D5D10D20C5×D4C5×D5D5×C10C5×D20
kernelC5×D20C5×C20D5×C10D20C20D10C52C20C10C5C5C4C2C1
# reps112448122448816

Matrix representation of C5×D20 in GL2(𝔽41) generated by

100
010
,
360
08
,
08
360
G:=sub<GL(2,GF(41))| [10,0,0,10],[36,0,0,8],[0,36,8,0] >;

C5×D20 in GAP, Magma, Sage, TeX

C_5\times D_{20}
% in TeX

G:=Group("C5xD20");
// GroupNames label

G:=SmallGroup(200,29);
// by ID

G=gap.SmallGroup(200,29);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-5,221,106,4004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×D20 in TeX

׿
×
𝔽