Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=S3

Direct product G=NxQ with N=C3xDic3 and Q=S3
dρLabelID
C3xS3xDic3244C3xS3xDic3216,119

Semidirect products G=N:Q with N=C3xDic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xDic3):1S3 = C33:8D4φ: S3/C3C2 ⊆ Out C3xDic336(C3xDic3):1S3216,129
(C3xDic3):2S3 = Dic3xC3:S3φ: S3/C3C2 ⊆ Out C3xDic372(C3xDic3):2S3216,125
(C3xDic3):3S3 = C33:8(C2xC4)φ: S3/C3C2 ⊆ Out C3xDic336(C3xDic3):3S3216,126
(C3xDic3):4S3 = C3xC3:D12φ: S3/C3C2 ⊆ Out C3xDic3244(C3xDic3):4S3216,122
(C3xDic3):5S3 = C3xC6.D6φ: trivial image244(C3xDic3):5S3216,120

Non-split extensions G=N.Q with N=C3xDic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xDic3).1S3 = C9:Dic6φ: S3/C3C2 ⊆ Out C3xDic3724-(C3xDic3).1S3216,26
(C3xDic3).2S3 = C3:D36φ: S3/C3C2 ⊆ Out C3xDic3364+(C3xDic3).2S3216,29
(C3xDic3).3S3 = C33:4Q8φ: S3/C3C2 ⊆ Out C3xDic372(C3xDic3).3S3216,130
(C3xDic3).4S3 = Dic3xD9φ: S3/C3C2 ⊆ Out C3xDic3724-(C3xDic3).4S3216,27
(C3xDic3).5S3 = C18.D6φ: S3/C3C2 ⊆ Out C3xDic3364+(C3xDic3).5S3216,28
(C3xDic3).6S3 = C3xC32:2Q8φ: S3/C3C2 ⊆ Out C3xDic3244(C3xDic3).6S3216,123

׿
x
:
Z
F
o
wr
Q
<