Extensions 1→N→G→Q→1 with N=C2×Dic13 and Q=C2

Direct product G=N×Q with N=C2×Dic13 and Q=C2
dρLabelID
C22×Dic13208C2^2xDic13208,43

Semidirect products G=N:Q with N=C2×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic13)⋊1C2 = D26⋊C4φ: C2/C1C2 ⊆ Out C2×Dic13104(C2xDic13):1C2208,14
(C2×Dic13)⋊2C2 = C23.D13φ: C2/C1C2 ⊆ Out C2×Dic13104(C2xDic13):2C2208,19
(C2×Dic13)⋊3C2 = D42D13φ: C2/C1C2 ⊆ Out C2×Dic131044-(C2xDic13):3C2208,40
(C2×Dic13)⋊4C2 = C2×C13⋊D4φ: C2/C1C2 ⊆ Out C2×Dic13104(C2xDic13):4C2208,44
(C2×Dic13)⋊5C2 = C2×C4×D13φ: trivial image104(C2xDic13):5C2208,36

Non-split extensions G=N.Q with N=C2×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic13).1C2 = C26.D4φ: C2/C1C2 ⊆ Out C2×Dic13208(C2xDic13).1C2208,12
(C2×Dic13).2C2 = C523C4φ: C2/C1C2 ⊆ Out C2×Dic13208(C2xDic13).2C2208,13
(C2×Dic13).3C2 = C2×Dic26φ: C2/C1C2 ⊆ Out C2×Dic13208(C2xDic13).3C2208,35
(C2×Dic13).4C2 = C2×C13⋊C8φ: C2/C1C2 ⊆ Out C2×Dic13208(C2xDic13).4C2208,32
(C2×Dic13).5C2 = C13⋊M4(2)φ: C2/C1C2 ⊆ Out C2×Dic131044-(C2xDic13).5C2208,33
(C2×Dic13).6C2 = C4×Dic13φ: trivial image208(C2xDic13).6C2208,11

׿
×
𝔽