Copied to
clipboard

G = C2×C13⋊D4order 208 = 24·13

Direct product of C2 and C13⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C13⋊D4, C262D4, C23⋊D13, C222D26, D263C22, C26.10C23, Dic132C22, C133(C2×D4), (C2×C26)⋊3C22, (C22×C26)⋊2C2, (C2×Dic13)⋊4C2, (C22×D13)⋊3C2, C2.10(C22×D13), SmallGroup(208,44)

Series: Derived Chief Lower central Upper central

C1C26 — C2×C13⋊D4
C1C13C26D26C22×D13 — C2×C13⋊D4
C13C26 — C2×C13⋊D4
C1C22C23

Generators and relations for C2×C13⋊D4
 G = < a,b,c,d | a2=b13=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 298 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C13, C2×D4, D13, C26, C26, C26, Dic13, D26, D26, C2×C26, C2×C26, C2×C26, C2×Dic13, C13⋊D4, C22×D13, C22×C26, C2×C13⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, D26, C13⋊D4, C22×D13, C2×C13⋊D4

Smallest permutation representation of C2×C13⋊D4
On 104 points
Generators in S104
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 79)(41 80)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 88)(50 89)(51 90)(52 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 27 14 40)(2 39 15 52)(3 38 16 51)(4 37 17 50)(5 36 18 49)(6 35 19 48)(7 34 20 47)(8 33 21 46)(9 32 22 45)(10 31 23 44)(11 30 24 43)(12 29 25 42)(13 28 26 41)(53 79 66 92)(54 91 67 104)(55 90 68 103)(56 89 69 102)(57 88 70 101)(58 87 71 100)(59 86 72 99)(60 85 73 98)(61 84 74 97)(62 83 75 96)(63 82 76 95)(64 81 77 94)(65 80 78 93)
(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(27 40)(28 52)(29 51)(30 50)(31 49)(32 48)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)(54 65)(55 64)(56 63)(57 62)(58 61)(59 60)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(79 92)(80 104)(81 103)(82 102)(83 101)(84 100)(85 99)(86 98)(87 97)(88 96)(89 95)(90 94)(91 93)

G:=sub<Sym(104)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,27,14,40)(2,39,15,52)(3,38,16,51)(4,37,17,50)(5,36,18,49)(6,35,19,48)(7,34,20,47)(8,33,21,46)(9,32,22,45)(10,31,23,44)(11,30,24,43)(12,29,25,42)(13,28,26,41)(53,79,66,92)(54,91,67,104)(55,90,68,103)(56,89,69,102)(57,88,70,101)(58,87,71,100)(59,86,72,99)(60,85,73,98)(61,84,74,97)(62,83,75,96)(63,82,76,95)(64,81,77,94)(65,80,78,93), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,40)(28,52)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(54,65)(55,64)(56,63)(57,62)(58,61)(59,60)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(79,92)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)>;

G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,27,14,40)(2,39,15,52)(3,38,16,51)(4,37,17,50)(5,36,18,49)(6,35,19,48)(7,34,20,47)(8,33,21,46)(9,32,22,45)(10,31,23,44)(11,30,24,43)(12,29,25,42)(13,28,26,41)(53,79,66,92)(54,91,67,104)(55,90,68,103)(56,89,69,102)(57,88,70,101)(58,87,71,100)(59,86,72,99)(60,85,73,98)(61,84,74,97)(62,83,75,96)(63,82,76,95)(64,81,77,94)(65,80,78,93), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,40)(28,52)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(54,65)(55,64)(56,63)(57,62)(58,61)(59,60)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(79,92)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93) );

G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,79),(41,80),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,88),(50,89),(51,90),(52,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,27,14,40),(2,39,15,52),(3,38,16,51),(4,37,17,50),(5,36,18,49),(6,35,19,48),(7,34,20,47),(8,33,21,46),(9,32,22,45),(10,31,23,44),(11,30,24,43),(12,29,25,42),(13,28,26,41),(53,79,66,92),(54,91,67,104),(55,90,68,103),(56,89,69,102),(57,88,70,101),(58,87,71,100),(59,86,72,99),(60,85,73,98),(61,84,74,97),(62,83,75,96),(63,82,76,95),(64,81,77,94),(65,80,78,93)], [(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(27,40),(28,52),(29,51),(30,50),(31,49),(32,48),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41),(54,65),(55,64),(56,63),(57,62),(58,61),(59,60),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(79,92),(80,104),(81,103),(82,102),(83,101),(84,100),(85,99),(86,98),(87,97),(88,96),(89,95),(90,94),(91,93)]])

C2×C13⋊D4 is a maximal subgroup of
C22.2D52  D26.4D4  Dic13.4D4  Dic134D4  C22⋊D52  D26.12D4  D26⋊D4  C23.6D26  C22.D52  C23.23D26  C527D4  C23⋊D26  C522D4  Dic13⋊D4  C52⋊D4  C24⋊D13  C2×D4×D13  D46D26
C2×C13⋊D4 is a maximal quotient of
C52.48D4  C23.23D26  C527D4  D526C22  C23.18D26  C52.17D4  C23⋊D26  C522D4  Dic13⋊D4  C52⋊D4  Q8.D26  Dic13⋊Q8  D263Q8  C52.23D4  D4⋊D26  C52.C23  D4.9D26  C24⋊D13

58 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B13A···13F26A···26AP
order122222224413···1326···26
size111122262626262···22···2

58 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2D4D13D26C13⋊D4
kernelC2×C13⋊D4C2×Dic13C13⋊D4C22×D13C22×C26C26C23C22C2
# reps11411261824

Matrix representation of C2×C13⋊D4 in GL3(𝔽53) generated by

5200
010
001
,
100
03952
03140
,
100
01329
03840
,
5200
0627
03647
G:=sub<GL(3,GF(53))| [52,0,0,0,1,0,0,0,1],[1,0,0,0,39,31,0,52,40],[1,0,0,0,13,38,0,29,40],[52,0,0,0,6,36,0,27,47] >;

C2×C13⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_{13}\rtimes D_4
% in TeX

G:=Group("C2xC13:D4");
// GroupNames label

G:=SmallGroup(208,44);
// by ID

G=gap.SmallGroup(208,44);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,182,4804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^13=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽