Copied to
clipboard

G = C13⋊M4(2)  order 208 = 24·13

The semidirect product of C13 and M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C132M4(2), Dic13.3C4, Dic13.7C22, C13⋊C82C2, C26.6(C2×C4), (C2×C26).2C4, C22.(C13⋊C4), (C2×Dic13).5C2, C2.6(C2×C13⋊C4), SmallGroup(208,33)

Series: Derived Chief Lower central Upper central

C1C26 — C13⋊M4(2)
C1C13C26Dic13C13⋊C8 — C13⋊M4(2)
C13C26 — C13⋊M4(2)
C1C2C22

Generators and relations for C13⋊M4(2)
 G = < a,b,c | a13=b8=c2=1, bab-1=a5, ac=ca, cbc=b5 >

2C2
13C4
13C4
2C26
13C8
13C2×C4
13C8
13M4(2)

Character table of C13⋊M4(2)

 class 12A2B4A4B4C8A8B8C8D13A13B13C26A26B26C26D26E26F26G26H26I
 size 11213132626262626444444444444
ρ11111111111111111111111    trivial
ρ211-111-11-11-1111-1-1-1-1111-1-1    linear of order 2
ρ3111111-1-1-1-1111111111111    linear of order 2
ρ411-111-1-11-11111-1-1-1-1111-1-1    linear of order 2
ρ5111-1-1-1-i-iii111111111111    linear of order 4
ρ611-1-1-11-iii-i111-1-1-1-1111-1-1    linear of order 4
ρ7111-1-1-1ii-i-i111111111111    linear of order 4
ρ811-1-1-11i-i-ii111-1-1-1-1111-1-1    linear of order 4
ρ92-20-2i2i000002220000-2-2-200    complex lifted from M4(2)
ρ102-202i-2i000002220000-2-2-200    complex lifted from M4(2)
ρ1144-40000000ζ131213813513ζ13111310133132ζ13913713613413111310133132139137136134131213813513139137136134ζ131213813513ζ13111310133132ζ13913713613413121381351313111310133132    orthogonal lifted from C2×C13⋊C4
ρ124440000000ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ139137136134    orthogonal lifted from C13⋊C4
ρ1344-40000000ζ13111310133132ζ139137136134ζ13121381351313913713613413121381351313111310133132131213813513ζ13111310133132ζ139137136134ζ13121381351313111310133132139137136134    orthogonal lifted from C2×C13⋊C4
ρ144440000000ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ131213813513    orthogonal lifted from C13⋊C4
ρ1544-40000000ζ139137136134ζ131213813513ζ131113101331321312138135131311131013313213913713613413111310133132ζ139137136134ζ131213813513ζ13111310133132139137136134131213813513    orthogonal lifted from C2×C13⋊C4
ρ164440000000ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132    orthogonal lifted from C13⋊C4
ρ174-400000000ζ131213813513ζ13111310133132ζ13913713613413111310133132ζ13913713613413121381351313913713613413121381351313111310133132139137136134ζ131213813513ζ13111310133132    symplectic faithful, Schur index 2
ρ184-400000000ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132139137136134ζ131213813513ζ1391371361341312138135131311131013313213913713613413121381351313111310133132    symplectic faithful, Schur index 2
ρ194-400000000ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ131113101331321312138135131311131013313213913713613413121381351313111310133132139137136134    symplectic faithful, Schur index 2
ρ204-400000000ζ139137136134ζ131213813513ζ13111310133132ζ13121381351313111310133132139137136134ζ1311131013313213913713613413121381351313111310133132ζ139137136134131213813513    symplectic faithful, Schur index 2
ρ214-400000000ζ139137136134ζ131213813513ζ13111310133132131213813513ζ13111310133132ζ1391371361341311131013313213913713613413121381351313111310133132139137136134ζ131213813513    symplectic faithful, Schur index 2
ρ224-400000000ζ13111310133132ζ139137136134ζ13121381351313913713613413121381351313111310133132ζ13121381351313111310133132139137136134131213813513ζ13111310133132ζ139137136134    symplectic faithful, Schur index 2

Smallest permutation representation of C13⋊M4(2)
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 84 27 74 14 103 40 56)(2 79 39 66 15 98 52 61)(3 87 38 71 16 93 51 53)(4 82 37 76 17 101 50 58)(5 90 36 68 18 96 49 63)(6 85 35 73 19 104 48 55)(7 80 34 78 20 99 47 60)(8 88 33 70 21 94 46 65)(9 83 32 75 22 102 45 57)(10 91 31 67 23 97 44 62)(11 86 30 72 24 92 43 54)(12 81 29 77 25 100 42 59)(13 89 28 69 26 95 41 64)
(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 66)(62 67)(63 68)(64 69)(65 70)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)(85 104)(86 92)(87 93)(88 94)(89 95)(90 96)(91 97)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,84,27,74,14,103,40,56)(2,79,39,66,15,98,52,61)(3,87,38,71,16,93,51,53)(4,82,37,76,17,101,50,58)(5,90,36,68,18,96,49,63)(6,85,35,73,19,104,48,55)(7,80,34,78,20,99,47,60)(8,88,33,70,21,94,46,65)(9,83,32,75,22,102,45,57)(10,91,31,67,23,97,44,62)(11,86,30,72,24,92,43,54)(12,81,29,77,25,100,42,59)(13,89,28,69,26,95,41,64), (53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,66)(62,67)(63,68)(64,69)(65,70)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,92)(87,93)(88,94)(89,95)(90,96)(91,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,84,27,74,14,103,40,56)(2,79,39,66,15,98,52,61)(3,87,38,71,16,93,51,53)(4,82,37,76,17,101,50,58)(5,90,36,68,18,96,49,63)(6,85,35,73,19,104,48,55)(7,80,34,78,20,99,47,60)(8,88,33,70,21,94,46,65)(9,83,32,75,22,102,45,57)(10,91,31,67,23,97,44,62)(11,86,30,72,24,92,43,54)(12,81,29,77,25,100,42,59)(13,89,28,69,26,95,41,64), (53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,66)(62,67)(63,68)(64,69)(65,70)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,92)(87,93)(88,94)(89,95)(90,96)(91,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,84,27,74,14,103,40,56),(2,79,39,66,15,98,52,61),(3,87,38,71,16,93,51,53),(4,82,37,76,17,101,50,58),(5,90,36,68,18,96,49,63),(6,85,35,73,19,104,48,55),(7,80,34,78,20,99,47,60),(8,88,33,70,21,94,46,65),(9,83,32,75,22,102,45,57),(10,91,31,67,23,97,44,62),(11,86,30,72,24,92,43,54),(12,81,29,77,25,100,42,59),(13,89,28,69,26,95,41,64)], [(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,66),(62,67),(63,68),(64,69),(65,70),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103),(85,104),(86,92),(87,93),(88,94),(89,95),(90,96),(91,97)]])

C13⋊M4(2) is a maximal subgroup of   Dic13.D4  Dic13.4D4  D13⋊M4(2)  Dic26.C4
C13⋊M4(2) is a maximal quotient of   C26.C42  Dic13⋊C8  C26.M4(2)

Matrix representation of C13⋊M4(2) in GL6(𝔽313)

100000
010000
000100
000010
000001
0031210128101
,
253110000
122880000
0030525116474
00307233256303
007810963290
001871323925
,
100000
253120000
001000
000100
000010
000001

G:=sub<GL(6,GF(313))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,312,0,0,1,0,0,101,0,0,0,1,0,28,0,0,0,0,1,101],[25,12,0,0,0,0,311,288,0,0,0,0,0,0,305,307,78,187,0,0,251,233,109,132,0,0,164,256,63,39,0,0,74,303,290,25],[1,25,0,0,0,0,0,312,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C13⋊M4(2) in GAP, Magma, Sage, TeX

C_{13}\rtimes M_4(2)
% in TeX

G:=Group("C13:M4(2)");
// GroupNames label

G:=SmallGroup(208,33);
// by ID

G=gap.SmallGroup(208,33);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,20,101,42,3204,1214]);
// Polycyclic

G:=Group<a,b,c|a^13=b^8=c^2=1,b*a*b^-1=a^5,a*c=c*a,c*b*c=b^5>;
// generators/relations

Export

Subgroup lattice of C13⋊M4(2) in TeX
Character table of C13⋊M4(2) in TeX

׿
×
𝔽