Copied to
clipboard

G = C2×C118order 236 = 22·59

Abelian group of type [2,118]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C118, SmallGroup(236,4)

Series: Derived Chief Lower central Upper central

C1 — C2×C118
C1C59C118 — C2×C118
C1 — C2×C118
C1 — C2×C118

Generators and relations for C2×C118
 G = < a,b | a2=b118=1, ab=ba >


Smallest permutation representation of C2×C118
Regular action on 236 points
Generators in S236
(1 219)(2 220)(3 221)(4 222)(5 223)(6 224)(7 225)(8 226)(9 227)(10 228)(11 229)(12 230)(13 231)(14 232)(15 233)(16 234)(17 235)(18 236)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 129)(30 130)(31 131)(32 132)(33 133)(34 134)(35 135)(36 136)(37 137)(38 138)(39 139)(40 140)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(61 161)(62 162)(63 163)(64 164)(65 165)(66 166)(67 167)(68 168)(69 169)(70 170)(71 171)(72 172)(73 173)(74 174)(75 175)(76 176)(77 177)(78 178)(79 179)(80 180)(81 181)(82 182)(83 183)(84 184)(85 185)(86 186)(87 187)(88 188)(89 189)(90 190)(91 191)(92 192)(93 193)(94 194)(95 195)(96 196)(97 197)(98 198)(99 199)(100 200)(101 201)(102 202)(103 203)(104 204)(105 205)(106 206)(107 207)(108 208)(109 209)(110 210)(111 211)(112 212)(113 213)(114 214)(115 215)(116 216)(117 217)(118 218)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118)(119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236)

G:=sub<Sym(236)| (1,219)(2,220)(3,221)(4,222)(5,223)(6,224)(7,225)(8,226)(9,227)(10,228)(11,229)(12,230)(13,231)(14,232)(15,233)(16,234)(17,235)(18,236)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,161)(62,162)(63,163)(64,164)(65,165)(66,166)(67,167)(68,168)(69,169)(70,170)(71,171)(72,172)(73,173)(74,174)(75,175)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200)(101,201)(102,202)(103,203)(104,204)(105,205)(106,206)(107,207)(108,208)(109,209)(110,210)(111,211)(112,212)(113,213)(114,214)(115,215)(116,216)(117,217)(118,218), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118)(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236)>;

G:=Group( (1,219)(2,220)(3,221)(4,222)(5,223)(6,224)(7,225)(8,226)(9,227)(10,228)(11,229)(12,230)(13,231)(14,232)(15,233)(16,234)(17,235)(18,236)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,161)(62,162)(63,163)(64,164)(65,165)(66,166)(67,167)(68,168)(69,169)(70,170)(71,171)(72,172)(73,173)(74,174)(75,175)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200)(101,201)(102,202)(103,203)(104,204)(105,205)(106,206)(107,207)(108,208)(109,209)(110,210)(111,211)(112,212)(113,213)(114,214)(115,215)(116,216)(117,217)(118,218), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118)(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236) );

G=PermutationGroup([[(1,219),(2,220),(3,221),(4,222),(5,223),(6,224),(7,225),(8,226),(9,227),(10,228),(11,229),(12,230),(13,231),(14,232),(15,233),(16,234),(17,235),(18,236),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,129),(30,130),(31,131),(32,132),(33,133),(34,134),(35,135),(36,136),(37,137),(38,138),(39,139),(40,140),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(61,161),(62,162),(63,163),(64,164),(65,165),(66,166),(67,167),(68,168),(69,169),(70,170),(71,171),(72,172),(73,173),(74,174),(75,175),(76,176),(77,177),(78,178),(79,179),(80,180),(81,181),(82,182),(83,183),(84,184),(85,185),(86,186),(87,187),(88,188),(89,189),(90,190),(91,191),(92,192),(93,193),(94,194),(95,195),(96,196),(97,197),(98,198),(99,199),(100,200),(101,201),(102,202),(103,203),(104,204),(105,205),(106,206),(107,207),(108,208),(109,209),(110,210),(111,211),(112,212),(113,213),(114,214),(115,215),(116,216),(117,217),(118,218)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118),(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236)]])

C2×C118 is a maximal subgroup of   C59⋊D4

236 conjugacy classes

class 1 2A2B2C59A···59BF118A···118FR
order122259···59118···118
size11111···11···1

236 irreducible representations

dim1111
type++
imageC1C2C59C118
kernelC2×C118C118C22C2
# reps1358174

Matrix representation of C2×C118 in GL2(𝔽709) generated by

7080
0708
,
1710
0125
G:=sub<GL(2,GF(709))| [708,0,0,708],[171,0,0,125] >;

C2×C118 in GAP, Magma, Sage, TeX

C_2\times C_{118}
% in TeX

G:=Group("C2xC118");
// GroupNames label

G:=SmallGroup(236,4);
// by ID

G=gap.SmallGroup(236,4);
# by ID

G:=PCGroup([3,-2,-2,-59]);
// Polycyclic

G:=Group<a,b|a^2=b^118=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2×C118 in TeX

׿
×
𝔽