extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×C20) = S3×C40 | φ: C2×C20/C20 → C2 ⊆ Aut C6 | 120 | 2 | C6.1(C2xC20) | 240,49 |
C6.2(C2×C20) = C5×C8⋊S3 | φ: C2×C20/C20 → C2 ⊆ Aut C6 | 120 | 2 | C6.2(C2xC20) | 240,50 |
C6.3(C2×C20) = C5×Dic3⋊C4 | φ: C2×C20/C20 → C2 ⊆ Aut C6 | 240 | | C6.3(C2xC20) | 240,57 |
C6.4(C2×C20) = C5×D6⋊C4 | φ: C2×C20/C20 → C2 ⊆ Aut C6 | 120 | | C6.4(C2xC20) | 240,59 |
C6.5(C2×C20) = C10×C3⋊C8 | φ: C2×C20/C2×C10 → C2 ⊆ Aut C6 | 240 | | C6.5(C2xC20) | 240,54 |
C6.6(C2×C20) = C5×C4.Dic3 | φ: C2×C20/C2×C10 → C2 ⊆ Aut C6 | 120 | 2 | C6.6(C2xC20) | 240,55 |
C6.7(C2×C20) = Dic3×C20 | φ: C2×C20/C2×C10 → C2 ⊆ Aut C6 | 240 | | C6.7(C2xC20) | 240,56 |
C6.8(C2×C20) = C5×C4⋊Dic3 | φ: C2×C20/C2×C10 → C2 ⊆ Aut C6 | 240 | | C6.8(C2xC20) | 240,58 |
C6.9(C2×C20) = C5×C6.D4 | φ: C2×C20/C2×C10 → C2 ⊆ Aut C6 | 120 | | C6.9(C2xC20) | 240,64 |
C6.10(C2×C20) = C15×C22⋊C4 | central extension (φ=1) | 120 | | C6.10(C2xC20) | 240,82 |
C6.11(C2×C20) = C15×C4⋊C4 | central extension (φ=1) | 240 | | C6.11(C2xC20) | 240,83 |
C6.12(C2×C20) = C15×M4(2) | central extension (φ=1) | 120 | 2 | C6.12(C2xC20) | 240,85 |