Copied to
clipboard

G = C5×C6.D4order 240 = 24·3·5

Direct product of C5 and C6.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C6.D4, C30.51D4, (C2×C6)⋊2C20, (C2×C30)⋊10C4, C6.9(C2×C20), C6.11(C5×D4), C30.61(C2×C4), (C2×C10)⋊6Dic3, (C2×C10).35D6, C23.2(C5×S3), C1512(C22⋊C4), (C10×Dic3)⋊8C2, (C2×Dic3)⋊2C10, (C22×C10).3S3, (C22×C30).6C2, C22.7(S3×C10), (C22×C6).2C10, C2.5(C10×Dic3), C222(C5×Dic3), C10.27(C3⋊D4), (C2×C30).46C22, C10.22(C2×Dic3), C32(C5×C22⋊C4), C2.3(C5×C3⋊D4), (C2×C6).7(C2×C10), SmallGroup(240,64)

Series: Derived Chief Lower central Upper central

C1C6 — C5×C6.D4
C1C3C6C2×C6C2×C30C10×Dic3 — C5×C6.D4
C3C6 — C5×C6.D4
C1C2×C10C22×C10

Generators and relations for C5×C6.D4
 G = < a,b,c,d | a5=b6=c4=1, d2=b3, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b3c-1 >

Subgroups: 120 in 68 conjugacy classes, 38 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, C6, C6, C6, C2×C4, C23, C10, C10, C10, Dic3, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C20, C2×C10, C2×C10, C2×C10, C2×Dic3, C22×C6, C30, C30, C30, C2×C20, C22×C10, C6.D4, C5×Dic3, C2×C30, C2×C30, C2×C30, C5×C22⋊C4, C10×Dic3, C22×C30, C5×C6.D4
Quotients: C1, C2, C4, C22, C5, S3, C2×C4, D4, C10, Dic3, D6, C22⋊C4, C20, C2×C10, C2×Dic3, C3⋊D4, C5×S3, C2×C20, C5×D4, C6.D4, C5×Dic3, S3×C10, C5×C22⋊C4, C10×Dic3, C5×C3⋊D4, C5×C6.D4

Smallest permutation representation of C5×C6.D4
On 120 points
Generators in S120
(1 66 49 37 25)(2 61 50 38 26)(3 62 51 39 27)(4 63 52 40 28)(5 64 53 41 29)(6 65 54 42 30)(7 110 98 86 74)(8 111 99 87 75)(9 112 100 88 76)(10 113 101 89 77)(11 114 102 90 78)(12 109 97 85 73)(13 58 46 34 22)(14 59 47 35 23)(15 60 48 36 24)(16 55 43 31 19)(17 56 44 32 20)(18 57 45 33 21)(67 115 103 91 79)(68 116 104 92 80)(69 117 105 93 81)(70 118 106 94 82)(71 119 107 95 83)(72 120 108 96 84)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 67 14 74)(2 72 15 73)(3 71 16 78)(4 70 17 77)(5 69 18 76)(6 68 13 75)(7 66 115 59)(8 65 116 58)(9 64 117 57)(10 63 118 56)(11 62 119 55)(12 61 120 60)(19 90 27 83)(20 89 28 82)(21 88 29 81)(22 87 30 80)(23 86 25 79)(24 85 26 84)(31 102 39 95)(32 101 40 94)(33 100 41 93)(34 99 42 92)(35 98 37 91)(36 97 38 96)(43 114 51 107)(44 113 52 106)(45 112 53 105)(46 111 54 104)(47 110 49 103)(48 109 50 108)
(1 77 4 74)(2 76 5 73)(3 75 6 78)(7 66 10 63)(8 65 11 62)(9 64 12 61)(13 71 16 68)(14 70 17 67)(15 69 18 72)(19 80 22 83)(20 79 23 82)(21 84 24 81)(25 89 28 86)(26 88 29 85)(27 87 30 90)(31 92 34 95)(32 91 35 94)(33 96 36 93)(37 101 40 98)(38 100 41 97)(39 99 42 102)(43 104 46 107)(44 103 47 106)(45 108 48 105)(49 113 52 110)(50 112 53 109)(51 111 54 114)(55 116 58 119)(56 115 59 118)(57 120 60 117)

G:=sub<Sym(120)| (1,66,49,37,25)(2,61,50,38,26)(3,62,51,39,27)(4,63,52,40,28)(5,64,53,41,29)(6,65,54,42,30)(7,110,98,86,74)(8,111,99,87,75)(9,112,100,88,76)(10,113,101,89,77)(11,114,102,90,78)(12,109,97,85,73)(13,58,46,34,22)(14,59,47,35,23)(15,60,48,36,24)(16,55,43,31,19)(17,56,44,32,20)(18,57,45,33,21)(67,115,103,91,79)(68,116,104,92,80)(69,117,105,93,81)(70,118,106,94,82)(71,119,107,95,83)(72,120,108,96,84), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,67,14,74)(2,72,15,73)(3,71,16,78)(4,70,17,77)(5,69,18,76)(6,68,13,75)(7,66,115,59)(8,65,116,58)(9,64,117,57)(10,63,118,56)(11,62,119,55)(12,61,120,60)(19,90,27,83)(20,89,28,82)(21,88,29,81)(22,87,30,80)(23,86,25,79)(24,85,26,84)(31,102,39,95)(32,101,40,94)(33,100,41,93)(34,99,42,92)(35,98,37,91)(36,97,38,96)(43,114,51,107)(44,113,52,106)(45,112,53,105)(46,111,54,104)(47,110,49,103)(48,109,50,108), (1,77,4,74)(2,76,5,73)(3,75,6,78)(7,66,10,63)(8,65,11,62)(9,64,12,61)(13,71,16,68)(14,70,17,67)(15,69,18,72)(19,80,22,83)(20,79,23,82)(21,84,24,81)(25,89,28,86)(26,88,29,85)(27,87,30,90)(31,92,34,95)(32,91,35,94)(33,96,36,93)(37,101,40,98)(38,100,41,97)(39,99,42,102)(43,104,46,107)(44,103,47,106)(45,108,48,105)(49,113,52,110)(50,112,53,109)(51,111,54,114)(55,116,58,119)(56,115,59,118)(57,120,60,117)>;

G:=Group( (1,66,49,37,25)(2,61,50,38,26)(3,62,51,39,27)(4,63,52,40,28)(5,64,53,41,29)(6,65,54,42,30)(7,110,98,86,74)(8,111,99,87,75)(9,112,100,88,76)(10,113,101,89,77)(11,114,102,90,78)(12,109,97,85,73)(13,58,46,34,22)(14,59,47,35,23)(15,60,48,36,24)(16,55,43,31,19)(17,56,44,32,20)(18,57,45,33,21)(67,115,103,91,79)(68,116,104,92,80)(69,117,105,93,81)(70,118,106,94,82)(71,119,107,95,83)(72,120,108,96,84), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,67,14,74)(2,72,15,73)(3,71,16,78)(4,70,17,77)(5,69,18,76)(6,68,13,75)(7,66,115,59)(8,65,116,58)(9,64,117,57)(10,63,118,56)(11,62,119,55)(12,61,120,60)(19,90,27,83)(20,89,28,82)(21,88,29,81)(22,87,30,80)(23,86,25,79)(24,85,26,84)(31,102,39,95)(32,101,40,94)(33,100,41,93)(34,99,42,92)(35,98,37,91)(36,97,38,96)(43,114,51,107)(44,113,52,106)(45,112,53,105)(46,111,54,104)(47,110,49,103)(48,109,50,108), (1,77,4,74)(2,76,5,73)(3,75,6,78)(7,66,10,63)(8,65,11,62)(9,64,12,61)(13,71,16,68)(14,70,17,67)(15,69,18,72)(19,80,22,83)(20,79,23,82)(21,84,24,81)(25,89,28,86)(26,88,29,85)(27,87,30,90)(31,92,34,95)(32,91,35,94)(33,96,36,93)(37,101,40,98)(38,100,41,97)(39,99,42,102)(43,104,46,107)(44,103,47,106)(45,108,48,105)(49,113,52,110)(50,112,53,109)(51,111,54,114)(55,116,58,119)(56,115,59,118)(57,120,60,117) );

G=PermutationGroup([[(1,66,49,37,25),(2,61,50,38,26),(3,62,51,39,27),(4,63,52,40,28),(5,64,53,41,29),(6,65,54,42,30),(7,110,98,86,74),(8,111,99,87,75),(9,112,100,88,76),(10,113,101,89,77),(11,114,102,90,78),(12,109,97,85,73),(13,58,46,34,22),(14,59,47,35,23),(15,60,48,36,24),(16,55,43,31,19),(17,56,44,32,20),(18,57,45,33,21),(67,115,103,91,79),(68,116,104,92,80),(69,117,105,93,81),(70,118,106,94,82),(71,119,107,95,83),(72,120,108,96,84)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,67,14,74),(2,72,15,73),(3,71,16,78),(4,70,17,77),(5,69,18,76),(6,68,13,75),(7,66,115,59),(8,65,116,58),(9,64,117,57),(10,63,118,56),(11,62,119,55),(12,61,120,60),(19,90,27,83),(20,89,28,82),(21,88,29,81),(22,87,30,80),(23,86,25,79),(24,85,26,84),(31,102,39,95),(32,101,40,94),(33,100,41,93),(34,99,42,92),(35,98,37,91),(36,97,38,96),(43,114,51,107),(44,113,52,106),(45,112,53,105),(46,111,54,104),(47,110,49,103),(48,109,50,108)], [(1,77,4,74),(2,76,5,73),(3,75,6,78),(7,66,10,63),(8,65,11,62),(9,64,12,61),(13,71,16,68),(14,70,17,67),(15,69,18,72),(19,80,22,83),(20,79,23,82),(21,84,24,81),(25,89,28,86),(26,88,29,85),(27,87,30,90),(31,92,34,95),(32,91,35,94),(33,96,36,93),(37,101,40,98),(38,100,41,97),(39,99,42,102),(43,104,46,107),(44,103,47,106),(45,108,48,105),(49,113,52,110),(50,112,53,109),(51,111,54,114),(55,116,58,119),(56,115,59,118),(57,120,60,117)]])

C5×C6.D4 is a maximal subgroup of
(C2×C6).D20  C159(C23⋊C4)  Dic15.19D4  (C6×Dic5)⋊7C4  C23.13(S3×D5)  C23.14(S3×D5)  C23.48(S3×D5)  D306D4  C6.(D4×D5)  C6.(C2×D20)  C6.D4⋊D5  C23.17(S3×D5)  Dic153D4  C1526(C4×D4)  Dic1516D4  D30.45D4  D30.16D4  (C2×C6)⋊8D20  D3018D4  (C2×C30)⋊Q8  Dic15.48D4  C5×S3×C22⋊C4  C20×C3⋊D4  C5×D4×Dic3

90 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B5C5D6A···6G10A···10L10M···10T15A15B15C15D20A···20P30A···30AB
order1222223444455556···610···1010···101515151520···2030···30
size1111222666611112···21···12···222226···62···2

90 irreducible representations

dim111111112222222222
type+++++-+
imageC1C2C2C4C5C10C10C20S3D4Dic3D6C3⋊D4C5×S3C5×D4C5×Dic3S3×C10C5×C3⋊D4
kernelC5×C6.D4C10×Dic3C22×C30C2×C30C6.D4C2×Dic3C22×C6C2×C6C22×C10C30C2×C10C2×C10C10C23C6C22C22C2
# reps12144841612214488416

Matrix representation of C5×C6.D4 in GL3(𝔽61) generated by

100
0580
0058
,
6000
0470
0013
,
1100
001
0600
,
5000
001
010
G:=sub<GL(3,GF(61))| [1,0,0,0,58,0,0,0,58],[60,0,0,0,47,0,0,0,13],[11,0,0,0,0,60,0,1,0],[50,0,0,0,0,1,0,1,0] >;

C5×C6.D4 in GAP, Magma, Sage, TeX

C_5\times C_6.D_4
% in TeX

G:=Group("C5xC6.D4");
// GroupNames label

G:=SmallGroup(240,64);
// by ID

G=gap.SmallGroup(240,64);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-3,120,505,5765]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^6=c^4=1,d^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^-1>;
// generators/relations

׿
×
𝔽