# Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C5×S3

Direct product G=N×Q with N=C2×C4 and Q=C5×S3
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=C2×C4 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C5×S3) = C5×D6⋊C4φ: C5×S3/C15C2 ⊆ Aut C2×C4120(C2xC4):1(C5xS3)240,59
(C2×C4)⋊2(C5×S3) = C10×D12φ: C5×S3/C15C2 ⊆ Aut C2×C4120(C2xC4):2(C5xS3)240,167
(C2×C4)⋊3(C5×S3) = C5×C4○D12φ: C5×S3/C15C2 ⊆ Aut C2×C41202(C2xC4):3(C5xS3)240,168

Non-split extensions G=N.Q with N=C2×C4 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C5×S3) = C5×Dic3⋊C4φ: C5×S3/C15C2 ⊆ Aut C2×C4240(C2xC4).1(C5xS3)240,57
(C2×C4).2(C5×S3) = C5×C4.Dic3φ: C5×S3/C15C2 ⊆ Aut C2×C41202(C2xC4).2(C5xS3)240,55
(C2×C4).3(C5×S3) = C5×C4⋊Dic3φ: C5×S3/C15C2 ⊆ Aut C2×C4240(C2xC4).3(C5xS3)240,58
(C2×C4).4(C5×S3) = C10×Dic6φ: C5×S3/C15C2 ⊆ Aut C2×C4240(C2xC4).4(C5xS3)240,165
(C2×C4).5(C5×S3) = C10×C3⋊C8central extension (φ=1)240(C2xC4).5(C5xS3)240,54
(C2×C4).6(C5×S3) = Dic3×C20central extension (φ=1)240(C2xC4).6(C5xS3)240,56

׿
×
𝔽