Extensions 1→N→G→Q→1 with N=C40 and Q=S3

Direct product G=NxQ with N=C40 and Q=S3
dρLabelID
S3xC401202S3xC40240,49

Semidirect products G=N:Q with N=C40 and Q=S3
extensionφ:Q→Aut NdρLabelID
C40:1S3 = D120φ: S3/C3C2 ⊆ Aut C401202+C40:1S3240,68
C40:2S3 = C24:D5φ: S3/C3C2 ⊆ Aut C401202C40:2S3240,67
C40:3S3 = C8xD15φ: S3/C3C2 ⊆ Aut C401202C40:3S3240,65
C40:4S3 = C40:S3φ: S3/C3C2 ⊆ Aut C401202C40:4S3240,66
C40:5S3 = C5xD24φ: S3/C3C2 ⊆ Aut C401202C40:5S3240,52
C40:6S3 = C5xC24:C2φ: S3/C3C2 ⊆ Aut C401202C40:6S3240,51
C40:7S3 = C5xC8:S3φ: S3/C3C2 ⊆ Aut C401202C40:7S3240,50

Non-split extensions G=N.Q with N=C40 and Q=S3
extensionφ:Q→Aut NdρLabelID
C40.1S3 = Dic60φ: S3/C3C2 ⊆ Aut C402402-C40.1S3240,69
C40.2S3 = C15:3C16φ: S3/C3C2 ⊆ Aut C402402C40.2S3240,3
C40.3S3 = C5xDic12φ: S3/C3C2 ⊆ Aut C402402C40.3S3240,53
C40.4S3 = C5xC3:C16central extension (φ=1)2402C40.4S3240,1

׿
x
:
Z
F
o
wr
Q
<