d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3xC40 | 120 | 2 | S3xC40 | 240,49 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C40:1S3 = D120 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2+ | C40:1S3 | 240,68 |
C40:2S3 = C24:D5 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:2S3 | 240,67 |
C40:3S3 = C8xD15 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:3S3 | 240,65 |
C40:4S3 = C40:S3 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:4S3 | 240,66 |
C40:5S3 = C5xD24 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:5S3 | 240,52 |
C40:6S3 = C5xC24:C2 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:6S3 | 240,51 |
C40:7S3 = C5xC8:S3 | φ: S3/C3 → C2 ⊆ Aut C40 | 120 | 2 | C40:7S3 | 240,50 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C40.1S3 = Dic60 | φ: S3/C3 → C2 ⊆ Aut C40 | 240 | 2- | C40.1S3 | 240,69 |
C40.2S3 = C15:3C16 | φ: S3/C3 → C2 ⊆ Aut C40 | 240 | 2 | C40.2S3 | 240,3 |
C40.3S3 = C5xDic12 | φ: S3/C3 → C2 ⊆ Aut C40 | 240 | 2 | C40.3S3 | 240,53 |
C40.4S3 = C5xC3:C16 | central extension (φ=1) | 240 | 2 | C40.4S3 | 240,1 |