Copied to
clipboard

G = C8xD15order 240 = 24·3·5

Direct product of C8 and D15

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C8xD15, C40:3S3, C24:4D5, C120:4C2, D30.6C4, C20.47D6, C4.12D30, C12.48D10, C60.54C22, Dic15.6C4, C5:4(S3xC8), C3:2(C8xD5), C15:10(C2xC8), C6.5(C4xD5), C2.1(C4xD15), C15:3C8:13C2, C10.12(C4xS3), C30.35(C2xC4), (C4xD15).6C2, SmallGroup(240,65)

Series: Derived Chief Lower central Upper central

C1C15 — C8xD15
C1C5C15C30C60C4xD15 — C8xD15
C15 — C8xD15
C1C8

Generators and relations for C8xD15
 G = < a,b,c | a8=b15=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 184 in 44 conjugacy classes, 23 normal (21 characteristic)
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D5, D6, C2xC8, D10, C4xS3, D15, C4xD5, S3xC8, D30, C8xD5, C4xD15, C8xD15
15C2
15C2
15C22
15C4
5S3
5S3
3D5
3D5
15C8
15C2xC4
5Dic3
5D6
3D10
3Dic5
15C2xC8
5C3:C8
5C4xS3
3C4xD5
3C5:2C8
5S3xC8
3C8xD5

Smallest permutation representation of C8xD15
On 120 points
Generators in S120
(1 107 50 88 28 103 43 61)(2 108 51 89 29 104 44 62)(3 109 52 90 30 105 45 63)(4 110 53 76 16 91 31 64)(5 111 54 77 17 92 32 65)(6 112 55 78 18 93 33 66)(7 113 56 79 19 94 34 67)(8 114 57 80 20 95 35 68)(9 115 58 81 21 96 36 69)(10 116 59 82 22 97 37 70)(11 117 60 83 23 98 38 71)(12 118 46 84 24 99 39 72)(13 119 47 85 25 100 40 73)(14 120 48 86 26 101 41 74)(15 106 49 87 27 102 42 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)(25 30)(26 29)(27 28)(31 39)(32 38)(33 37)(34 36)(40 45)(41 44)(42 43)(46 53)(47 52)(48 51)(49 50)(54 60)(55 59)(56 58)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(76 84)(77 83)(78 82)(79 81)(85 90)(86 89)(87 88)(91 99)(92 98)(93 97)(94 96)(100 105)(101 104)(102 103)(106 107)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)

G:=sub<Sym(120)| (1,107,50,88,28,103,43,61)(2,108,51,89,29,104,44,62)(3,109,52,90,30,105,45,63)(4,110,53,76,16,91,31,64)(5,111,54,77,17,92,32,65)(6,112,55,78,18,93,33,66)(7,113,56,79,19,94,34,67)(8,114,57,80,20,95,35,68)(9,115,58,81,21,96,36,69)(10,116,59,82,22,97,37,70)(11,117,60,83,23,98,38,71)(12,118,46,84,24,99,39,72)(13,119,47,85,25,100,40,73)(14,120,48,86,26,101,41,74)(15,106,49,87,27,102,42,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,30)(26,29)(27,28)(31,39)(32,38)(33,37)(34,36)(40,45)(41,44)(42,43)(46,53)(47,52)(48,51)(49,50)(54,60)(55,59)(56,58)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,84)(77,83)(78,82)(79,81)(85,90)(86,89)(87,88)(91,99)(92,98)(93,97)(94,96)(100,105)(101,104)(102,103)(106,107)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)>;

G:=Group( (1,107,50,88,28,103,43,61)(2,108,51,89,29,104,44,62)(3,109,52,90,30,105,45,63)(4,110,53,76,16,91,31,64)(5,111,54,77,17,92,32,65)(6,112,55,78,18,93,33,66)(7,113,56,79,19,94,34,67)(8,114,57,80,20,95,35,68)(9,115,58,81,21,96,36,69)(10,116,59,82,22,97,37,70)(11,117,60,83,23,98,38,71)(12,118,46,84,24,99,39,72)(13,119,47,85,25,100,40,73)(14,120,48,86,26,101,41,74)(15,106,49,87,27,102,42,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,30)(26,29)(27,28)(31,39)(32,38)(33,37)(34,36)(40,45)(41,44)(42,43)(46,53)(47,52)(48,51)(49,50)(54,60)(55,59)(56,58)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,84)(77,83)(78,82)(79,81)(85,90)(86,89)(87,88)(91,99)(92,98)(93,97)(94,96)(100,105)(101,104)(102,103)(106,107)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115) );

G=PermutationGroup([[(1,107,50,88,28,103,43,61),(2,108,51,89,29,104,44,62),(3,109,52,90,30,105,45,63),(4,110,53,76,16,91,31,64),(5,111,54,77,17,92,32,65),(6,112,55,78,18,93,33,66),(7,113,56,79,19,94,34,67),(8,114,57,80,20,95,35,68),(9,115,58,81,21,96,36,69),(10,116,59,82,22,97,37,70),(11,117,60,83,23,98,38,71),(12,118,46,84,24,99,39,72),(13,119,47,85,25,100,40,73),(14,120,48,86,26,101,41,74),(15,106,49,87,27,102,42,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21),(25,30),(26,29),(27,28),(31,39),(32,38),(33,37),(34,36),(40,45),(41,44),(42,43),(46,53),(47,52),(48,51),(49,50),(54,60),(55,59),(56,58),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(76,84),(77,83),(78,82),(79,81),(85,90),(86,89),(87,88),(91,99),(92,98),(93,97),(94,96),(100,105),(101,104),(102,103),(106,107),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115)]])

C8xD15 is a maximal subgroup of
D15:2C16  D30.5C8  C80:S3  S3xC8xD5  C40:D6  C40:14D6  C40:5D6  Dic10.D6  C40.54D6  C40.35D6  Dic6.D10  D40:5S3  D24:5D5  D60.6C4  D60.3C4  D8:3D15  D4.5D30  D120:8C2
C8xD15 is a maximal quotient of
C80:S3  C60.26Q8  D30:3C8

72 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B 6 8A8B8C8D8E8F8G8H10A10B12A12B15A15B15C15D20A20B20C20D24A24B24C24D30A30B30C30D40A···40H60A···60H120A···120P
order12223444455688888888101012121515151520202020242424243030303040···4060···60120···120
size1115152111515222111115151515222222222222222222222···22···22···2

72 irreducible representations

dim1111111222222222222
type++++++++++
imageC1C2C2C2C4C4C8S3D5D6D10C4xS3D15C4xD5S3xC8D30C8xD5C4xD15C8xD15
kernelC8xD15C15:3C8C120C4xD15Dic15D30D15C40C24C20C12C10C8C6C5C4C3C2C1
# reps11112281212244448816

Matrix representation of C8xD15 in GL4(F241) generated by

211000
021100
0010
0001
,
2405100
19019000
001192
0064239
,
2405100
0100
001192
000240
G:=sub<GL(4,GF(241))| [211,0,0,0,0,211,0,0,0,0,1,0,0,0,0,1],[240,190,0,0,51,190,0,0,0,0,1,64,0,0,192,239],[240,0,0,0,51,1,0,0,0,0,1,0,0,0,192,240] >;

C8xD15 in GAP, Magma, Sage, TeX

C_8\times D_{15}
% in TeX

G:=Group("C8xD15");
// GroupNames label

G:=SmallGroup(240,65);
// by ID

G=gap.SmallGroup(240,65);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,31,50,964,6917]);
// Polycyclic

G:=Group<a,b,c|a^8=b^15=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C8xD15 in TeX

׿
x
:
Z
F
o
wr
Q
<