Extensions 1→N→G→Q→1 with N=C6 and Q=Dic10

Direct product G=N×Q with N=C6 and Q=Dic10

Semidirect products G=N:Q with N=C6 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C61Dic10 = C2×C15⋊Q8φ: Dic10/Dic5C2 ⊆ Aut C6240C6:1Dic10240,148
C62Dic10 = C2×Dic30φ: Dic10/C20C2 ⊆ Aut C6240C6:2Dic10240,175

Non-split extensions G=N.Q with N=C6 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C6.1Dic10 = C30.Q8φ: Dic10/Dic5C2 ⊆ Aut C6240C6.1Dic10240,29
C6.2Dic10 = Dic155C4φ: Dic10/Dic5C2 ⊆ Aut C6240C6.2Dic10240,30
C6.3Dic10 = C6.Dic10φ: Dic10/Dic5C2 ⊆ Aut C6240C6.3Dic10240,31
C6.4Dic10 = C30.4Q8φ: Dic10/C20C2 ⊆ Aut C6240C6.4Dic10240,73
C6.5Dic10 = C605C4φ: Dic10/C20C2 ⊆ Aut C6240C6.5Dic10240,74
C6.6Dic10 = C3×C10.D4central extension (φ=1)240C6.6Dic10240,41
C6.7Dic10 = C3×C4⋊Dic5central extension (φ=1)240C6.7Dic10240,42