metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C60⋊5C4, C4⋊Dic15, C2.1D60, C6.4D20, C30.5Q8, C20⋊3Dic3, C12⋊1Dic5, C30.22D4, C10.4D12, C2.2Dic30, C6.5Dic10, C10.5Dic6, C22.5D30, C15⋊8(C4⋊C4), (C2×C20).3S3, (C2×C60).5C2, C5⋊3(C4⋊Dic3), C3⋊2(C4⋊Dic5), (C2×C4).3D15, (C2×C12).3D5, C30.52(C2×C4), (C2×C6).23D10, (C2×C10).23D6, C6.9(C2×Dic5), C2.4(C2×Dic15), (C2×C30).24C22, (C2×Dic15).2C2, C10.16(C2×Dic3), SmallGroup(240,74)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C60⋊5C4
 G = < a,b | a60=b4=1, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 143 61 224)(2 142 62 223)(3 141 63 222)(4 140 64 221)(5 139 65 220)(6 138 66 219)(7 137 67 218)(8 136 68 217)(9 135 69 216)(10 134 70 215)(11 133 71 214)(12 132 72 213)(13 131 73 212)(14 130 74 211)(15 129 75 210)(16 128 76 209)(17 127 77 208)(18 126 78 207)(19 125 79 206)(20 124 80 205)(21 123 81 204)(22 122 82 203)(23 121 83 202)(24 180 84 201)(25 179 85 200)(26 178 86 199)(27 177 87 198)(28 176 88 197)(29 175 89 196)(30 174 90 195)(31 173 91 194)(32 172 92 193)(33 171 93 192)(34 170 94 191)(35 169 95 190)(36 168 96 189)(37 167 97 188)(38 166 98 187)(39 165 99 186)(40 164 100 185)(41 163 101 184)(42 162 102 183)(43 161 103 182)(44 160 104 181)(45 159 105 240)(46 158 106 239)(47 157 107 238)(48 156 108 237)(49 155 109 236)(50 154 110 235)(51 153 111 234)(52 152 112 233)(53 151 113 232)(54 150 114 231)(55 149 115 230)(56 148 116 229)(57 147 117 228)(58 146 118 227)(59 145 119 226)(60 144 120 225)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,143,61,224)(2,142,62,223)(3,141,63,222)(4,140,64,221)(5,139,65,220)(6,138,66,219)(7,137,67,218)(8,136,68,217)(9,135,69,216)(10,134,70,215)(11,133,71,214)(12,132,72,213)(13,131,73,212)(14,130,74,211)(15,129,75,210)(16,128,76,209)(17,127,77,208)(18,126,78,207)(19,125,79,206)(20,124,80,205)(21,123,81,204)(22,122,82,203)(23,121,83,202)(24,180,84,201)(25,179,85,200)(26,178,86,199)(27,177,87,198)(28,176,88,197)(29,175,89,196)(30,174,90,195)(31,173,91,194)(32,172,92,193)(33,171,93,192)(34,170,94,191)(35,169,95,190)(36,168,96,189)(37,167,97,188)(38,166,98,187)(39,165,99,186)(40,164,100,185)(41,163,101,184)(42,162,102,183)(43,161,103,182)(44,160,104,181)(45,159,105,240)(46,158,106,239)(47,157,107,238)(48,156,108,237)(49,155,109,236)(50,154,110,235)(51,153,111,234)(52,152,112,233)(53,151,113,232)(54,150,114,231)(55,149,115,230)(56,148,116,229)(57,147,117,228)(58,146,118,227)(59,145,119,226)(60,144,120,225)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,143,61,224)(2,142,62,223)(3,141,63,222)(4,140,64,221)(5,139,65,220)(6,138,66,219)(7,137,67,218)(8,136,68,217)(9,135,69,216)(10,134,70,215)(11,133,71,214)(12,132,72,213)(13,131,73,212)(14,130,74,211)(15,129,75,210)(16,128,76,209)(17,127,77,208)(18,126,78,207)(19,125,79,206)(20,124,80,205)(21,123,81,204)(22,122,82,203)(23,121,83,202)(24,180,84,201)(25,179,85,200)(26,178,86,199)(27,177,87,198)(28,176,88,197)(29,175,89,196)(30,174,90,195)(31,173,91,194)(32,172,92,193)(33,171,93,192)(34,170,94,191)(35,169,95,190)(36,168,96,189)(37,167,97,188)(38,166,98,187)(39,165,99,186)(40,164,100,185)(41,163,101,184)(42,162,102,183)(43,161,103,182)(44,160,104,181)(45,159,105,240)(46,158,106,239)(47,157,107,238)(48,156,108,237)(49,155,109,236)(50,154,110,235)(51,153,111,234)(52,152,112,233)(53,151,113,232)(54,150,114,231)(55,149,115,230)(56,148,116,229)(57,147,117,228)(58,146,118,227)(59,145,119,226)(60,144,120,225) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,143,61,224),(2,142,62,223),(3,141,63,222),(4,140,64,221),(5,139,65,220),(6,138,66,219),(7,137,67,218),(8,136,68,217),(9,135,69,216),(10,134,70,215),(11,133,71,214),(12,132,72,213),(13,131,73,212),(14,130,74,211),(15,129,75,210),(16,128,76,209),(17,127,77,208),(18,126,78,207),(19,125,79,206),(20,124,80,205),(21,123,81,204),(22,122,82,203),(23,121,83,202),(24,180,84,201),(25,179,85,200),(26,178,86,199),(27,177,87,198),(28,176,88,197),(29,175,89,196),(30,174,90,195),(31,173,91,194),(32,172,92,193),(33,171,93,192),(34,170,94,191),(35,169,95,190),(36,168,96,189),(37,167,97,188),(38,166,98,187),(39,165,99,186),(40,164,100,185),(41,163,101,184),(42,162,102,183),(43,161,103,182),(44,160,104,181),(45,159,105,240),(46,158,106,239),(47,157,107,238),(48,156,108,237),(49,155,109,236),(50,154,110,235),(51,153,111,234),(52,152,112,233),(53,151,113,232),(54,150,114,231),(55,149,115,230),(56,148,116,229),(57,147,117,228),(58,146,118,227),(59,145,119,226),(60,144,120,225)]])
C60⋊5C4 is a maximal subgroup of
 C6.D40  C10.D24  C6.Dic20  C10.Dic12  C60.7Q8  C60.Q8  C60.8Q8  C60.5Q8  C60.1Q8  C60.2Q8  Dic30⋊8C4  C120⋊10C4  C120⋊9C4  D60⋊8C4  D4⋊Dic15  Q8⋊2Dic15  Dic3×Dic10  Dic5×Dic6  Dic5.1Dic6  (S3×C20)⋊5C4  C60⋊5C4⋊C2  Dic3.Dic10  (C4×D5)⋊Dic3  C60.67D4  (C2×C60).C22  C60.46D4  C60.6Q8  C20.Dic6  D5×C4⋊Dic3  D10.17D12  Dic5×D12  D6⋊2Dic10  D10⋊2Dic6  Dic3×D20  S3×C4⋊Dic5  C60⋊D4  C60⋊4D4  D6.9D20  C60⋊Q8  C20⋊4Dic6  C4×Dic30  C60⋊8Q8  C60.24Q8  C4×D60  C22⋊2Dic30  C23.8D30  D30.28D4  C22.D60  C4⋊Dic30  Dic15.3Q8  C4.Dic30  C4⋊C4×D15  C4⋊C4⋊7D15  D30⋊6Q8  C4⋊C4⋊D15  C60.205D4  C23.26D30  C60⋊29D4  D4×Dic15  C60⋊2D4  Q8×Dic15  D30⋊7Q8
C60⋊5C4 is a maximal quotient of 
 C60⋊5C8  C120⋊10C4  C120⋊9C4  C4.18D60  C30.29C42
66 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 60A | ··· | 60P | 
| order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 | 
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 30 | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 
66 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 
| type | + | + | + | + | + | - | + | - | + | - | + | - | + | + | - | + | - | + | - | + | |
| image | C1 | C2 | C2 | C4 | S3 | D4 | Q8 | D5 | Dic3 | D6 | Dic5 | D10 | Dic6 | D12 | D15 | Dic10 | D20 | Dic15 | D30 | Dic30 | D60 | 
| kernel | C60⋊5C4 | C2×Dic15 | C2×C60 | C60 | C2×C20 | C30 | C30 | C2×C12 | C20 | C2×C10 | C12 | C2×C6 | C10 | C10 | C2×C4 | C6 | C6 | C4 | C22 | C2 | C2 | 
| # reps | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 8 | 8 | 
Matrix representation of C60⋊5C4 ►in GL3(𝔽61) generated by
| 1 | 0 | 0 | 
| 0 | 55 | 28 | 
| 0 | 33 | 39 | 
| 50 | 0 | 0 | 
| 0 | 45 | 8 | 
| 0 | 52 | 16 | 
G:=sub<GL(3,GF(61))| [1,0,0,0,55,33,0,28,39],[50,0,0,0,45,52,0,8,16] >;
C60⋊5C4 in GAP, Magma, Sage, TeX
C_{60}\rtimes_5C_4 % in TeX
G:=Group("C60:5C4"); // GroupNames label
G:=SmallGroup(240,74);
// by ID
G=gap.SmallGroup(240,74);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,121,55,964,6917]);
// Polycyclic
G:=Group<a,b|a^60=b^4=1,b*a*b^-1=a^-1>;
// generators/relations
Export