Extensions 1→N→G→Q→1 with N=C10 and Q=Dic6

Direct product G=N×Q with N=C10 and Q=Dic6

Semidirect products G=N:Q with N=C10 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C101Dic6 = C2×C15⋊Q8φ: Dic6/Dic3C2 ⊆ Aut C10240C10:1Dic6240,148
C102Dic6 = C2×Dic30φ: Dic6/C12C2 ⊆ Aut C10240C10:2Dic6240,175

Non-split extensions G=N.Q with N=C10 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C10.1Dic6 = C30.Q8φ: Dic6/Dic3C2 ⊆ Aut C10240C10.1Dic6240,29
C10.2Dic6 = Dic155C4φ: Dic6/Dic3C2 ⊆ Aut C10240C10.2Dic6240,30
C10.3Dic6 = C6.Dic10φ: Dic6/Dic3C2 ⊆ Aut C10240C10.3Dic6240,31
C10.4Dic6 = C30.4Q8φ: Dic6/C12C2 ⊆ Aut C10240C10.4Dic6240,73
C10.5Dic6 = C605C4φ: Dic6/C12C2 ⊆ Aut C10240C10.5Dic6240,74
C10.6Dic6 = C5×Dic3⋊C4central extension (φ=1)240C10.6Dic6240,57
C10.7Dic6 = C5×C4⋊Dic3central extension (φ=1)240C10.7Dic6240,58