Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C10

Direct product G=N×Q with N=C4×S3 and Q=C10
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=C4×S3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C10 = C5×S3×D4φ: C10/C5C2 ⊆ Out C4×S3604(C4xS3):1C10240,169
(C4×S3)⋊2C10 = C5×D42S3φ: C10/C5C2 ⊆ Out C4×S31204(C4xS3):2C10240,170
(C4×S3)⋊3C10 = C5×Q83S3φ: C10/C5C2 ⊆ Out C4×S31204(C4xS3):3C10240,172
(C4×S3)⋊4C10 = C5×C4○D12φ: C10/C5C2 ⊆ Out C4×S31202(C4xS3):4C10240,168

Non-split extensions G=N.Q with N=C4×S3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C4×S3).1C10 = C5×S3×Q8φ: C10/C5C2 ⊆ Out C4×S31204(C4xS3).1C10240,171
(C4×S3).2C10 = C5×C8⋊S3φ: C10/C5C2 ⊆ Out C4×S31202(C4xS3).2C10240,50
(C4×S3).3C10 = S3×C40φ: trivial image1202(C4xS3).3C10240,49

׿
×
𝔽