Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C10

Direct product G=N×Q with N=C2×Dic3 and Q=C10
dρLabelID
Dic3×C2×C10240Dic3xC2xC10240,173

Semidirect products G=N:Q with N=C2×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1C10 = C5×D6⋊C4φ: C10/C5C2 ⊆ Out C2×Dic3120(C2xDic3):1C10240,59
(C2×Dic3)⋊2C10 = C5×C6.D4φ: C10/C5C2 ⊆ Out C2×Dic3120(C2xDic3):2C10240,64
(C2×Dic3)⋊3C10 = C5×D42S3φ: C10/C5C2 ⊆ Out C2×Dic31204(C2xDic3):3C10240,170
(C2×Dic3)⋊4C10 = C10×C3⋊D4φ: C10/C5C2 ⊆ Out C2×Dic3120(C2xDic3):4C10240,174
(C2×Dic3)⋊5C10 = S3×C2×C20φ: trivial image120(C2xDic3):5C10240,166

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1C10 = C5×Dic3⋊C4φ: C10/C5C2 ⊆ Out C2×Dic3240(C2xDic3).1C10240,57
(C2×Dic3).2C10 = C5×C4⋊Dic3φ: C10/C5C2 ⊆ Out C2×Dic3240(C2xDic3).2C10240,58
(C2×Dic3).3C10 = C10×Dic6φ: C10/C5C2 ⊆ Out C2×Dic3240(C2xDic3).3C10240,165
(C2×Dic3).4C10 = Dic3×C20φ: trivial image240(C2xDic3).4C10240,56

׿
×
𝔽