Copied to
clipboard

G = D127order 254 = 2·127

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D127, C127⋊C2, sometimes denoted D254 or Dih127 or Dih254, SmallGroup(254,1)

Series: Derived Chief Lower central Upper central

C1C127 — D127
C1C127 — D127
C127 — D127
C1

Generators and relations for D127
 G = < a,b | a127=b2=1, bab=a-1 >

127C2

Smallest permutation representation of D127
On 127 points: primitive
Generators in S127
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127)
(1 127)(2 126)(3 125)(4 124)(5 123)(6 122)(7 121)(8 120)(9 119)(10 118)(11 117)(12 116)(13 115)(14 114)(15 113)(16 112)(17 111)(18 110)(19 109)(20 108)(21 107)(22 106)(23 105)(24 104)(25 103)(26 102)(27 101)(28 100)(29 99)(30 98)(31 97)(32 96)(33 95)(34 94)(35 93)(36 92)(37 91)(38 90)(39 89)(40 88)(41 87)(42 86)(43 85)(44 84)(45 83)(46 82)(47 81)(48 80)(49 79)(50 78)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)

G:=sub<Sym(127)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127)], [(1,127),(2,126),(3,125),(4,124),(5,123),(6,122),(7,121),(8,120),(9,119),(10,118),(11,117),(12,116),(13,115),(14,114),(15,113),(16,112),(17,111),(18,110),(19,109),(20,108),(21,107),(22,106),(23,105),(24,104),(25,103),(26,102),(27,101),(28,100),(29,99),(30,98),(31,97),(32,96),(33,95),(34,94),(35,93),(36,92),(37,91),(38,90),(39,89),(40,88),(41,87),(42,86),(43,85),(44,84),(45,83),(46,82),(47,81),(48,80),(49,79),(50,78),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65)])

65 conjugacy classes

class 1  2 127A···127BK
order12127···127
size11272···2

65 irreducible representations

dim112
type+++
imageC1C2D127
kernelD127C127C1
# reps1163

Matrix representation of D127 in GL2(𝔽509) generated by

270508
10
,
270508
112239
G:=sub<GL(2,GF(509))| [270,1,508,0],[270,112,508,239] >;

D127 in GAP, Magma, Sage, TeX

D_{127}
% in TeX

G:=Group("D127");
// GroupNames label

G:=SmallGroup(254,1);
// by ID

G=gap.SmallGroup(254,1);
# by ID

G:=PCGroup([2,-2,-127,1009]);
// Polycyclic

G:=Group<a,b|a^127=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D127 in TeX

׿
×
𝔽