A Z-group is a group all of whose Sylow subgroups are cyclic. Such groups are metacyclic, supersoluble and monomial. See also A-groups.
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C1 | Trivial group | 1 | 1+ | C1 | 1,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2 | Cyclic group | 2 | 1+ | C2 | 2,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3 | Cyclic group; = A3 = triangle rotations | 3 | 1 | C3 | 3,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C4 | Cyclic group; = square rotations | 4 | 1 | C4 | 4,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C5 | Cyclic group; = pentagon rotations | 5 | 1 | C5 | 5,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C6 | Cyclic group; = hexagon rotations | 6 | 1 | C6 | 6,2 |
S3 | Symmetric group on 3 letters; = D3 = GL2(𝔽2) = triangle symmetries = 1st non-abelian group | 3 | 2+ | S3 | 6,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C7 | Cyclic group | 7 | 1 | C7 | 7,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C8 | Cyclic group | 8 | 1 | C8 | 8,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C9 | Cyclic group | 9 | 1 | C9 | 9,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C10 | Cyclic group | 10 | 1 | C10 | 10,2 |
D5 | Dihedral group; = pentagon symmetries | 5 | 2+ | D5 | 10,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C11 | Cyclic group | 11 | 1 | C11 | 11,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C12 | Cyclic group | 12 | 1 | C12 | 12,2 |
Dic3 | Dicyclic group; = C3⋊C4 | 12 | 2- | Dic3 | 12,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C13 | Cyclic group | 13 | 1 | C13 | 13,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C14 | Cyclic group | 14 | 1 | C14 | 14,2 |
D7 | Dihedral group | 7 | 2+ | D7 | 14,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C15 | Cyclic group | 15 | 1 | C15 | 15,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C16 | Cyclic group | 16 | 1 | C16 | 16,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C17 | Cyclic group | 17 | 1 | C17 | 17,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C18 | Cyclic group | 18 | 1 | C18 | 18,2 |
D9 | Dihedral group | 9 | 2+ | D9 | 18,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C19 | Cyclic group | 19 | 1 | C19 | 19,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C20 | Cyclic group | 20 | 1 | C20 | 20,2 |
F5 | Frobenius group; = C5⋊C4 = AGL1(𝔽5) = Aut(D5) = Hol(C5) = Sz(2) | 5 | 4+ | F5 | 20,3 |
Dic5 | Dicyclic group; = C5⋊2C4 | 20 | 2- | Dic5 | 20,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C21 | Cyclic group | 21 | 1 | C21 | 21,2 |
C7⋊C3 | The semidirect product of C7 and C3 acting faithfully | 7 | 3 | C7:C3 | 21,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22 | Cyclic group | 22 | 1 | C22 | 22,2 |
D11 | Dihedral group | 11 | 2+ | D11 | 22,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C23 | Cyclic group | 23 | 1 | C23 | 23,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C24 | Cyclic group | 24 | 1 | C24 | 24,2 |
C3⋊C8 | The semidirect product of C3 and C8 acting via C8/C4=C2 | 24 | 2 | C3:C8 | 24,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C25 | Cyclic group | 25 | 1 | C25 | 25,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C26 | Cyclic group | 26 | 1 | C26 | 26,2 |
D13 | Dihedral group | 13 | 2+ | D13 | 26,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C27 | Cyclic group | 27 | 1 | C27 | 27,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C28 | Cyclic group | 28 | 1 | C28 | 28,2 |
Dic7 | Dicyclic group; = C7⋊C4 | 28 | 2- | Dic7 | 28,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C29 | Cyclic group | 29 | 1 | C29 | 29,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C30 | Cyclic group | 30 | 1 | C30 | 30,4 |
D15 | Dihedral group | 15 | 2+ | D15 | 30,3 |
C5×S3 | Direct product of C5 and S3 | 15 | 2 | C5xS3 | 30,1 |
C3×D5 | Direct product of C3 and D5 | 15 | 2 | C3xD5 | 30,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C31 | Cyclic group | 31 | 1 | C31 | 31,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C32 | Cyclic group | 32 | 1 | C32 | 32,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C33 | Cyclic group | 33 | 1 | C33 | 33,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C34 | Cyclic group | 34 | 1 | C34 | 34,2 |
D17 | Dihedral group | 17 | 2+ | D17 | 34,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C35 | Cyclic group | 35 | 1 | C35 | 35,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C36 | Cyclic group | 36 | 1 | C36 | 36,2 |
Dic9 | Dicyclic group; = C9⋊C4 | 36 | 2- | Dic9 | 36,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C37 | Cyclic group | 37 | 1 | C37 | 37,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C38 | Cyclic group | 38 | 1 | C38 | 38,2 |
D19 | Dihedral group | 19 | 2+ | D19 | 38,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C39 | Cyclic group | 39 | 1 | C39 | 39,2 |
C13⋊C3 | The semidirect product of C13 and C3 acting faithfully | 13 | 3 | C13:C3 | 39,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C40 | Cyclic group | 40 | 1 | C40 | 40,2 |
C5⋊C8 | The semidirect product of C5 and C8 acting via C8/C2=C4 | 40 | 4- | C5:C8 | 40,3 |
C5⋊2C8 | The semidirect product of C5 and C8 acting via C8/C4=C2 | 40 | 2 | C5:2C8 | 40,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C41 | Cyclic group | 41 | 1 | C41 | 41,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C42 | Cyclic group | 42 | 1 | C42 | 42,6 |
D21 | Dihedral group | 21 | 2+ | D21 | 42,5 |
F7 | Frobenius group; = C7⋊C6 = AGL1(𝔽7) = Aut(D7) = Hol(C7) | 7 | 6+ | F7 | 42,1 |
S3×C7 | Direct product of C7 and S3 | 21 | 2 | S3xC7 | 42,3 |
C3×D7 | Direct product of C3 and D7 | 21 | 2 | C3xD7 | 42,4 |
C2×C7⋊C3 | Direct product of C2 and C7⋊C3 | 14 | 3 | C2xC7:C3 | 42,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C43 | Cyclic group | 43 | 1 | C43 | 43,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C44 | Cyclic group | 44 | 1 | C44 | 44,2 |
Dic11 | Dicyclic group; = C11⋊C4 | 44 | 2- | Dic11 | 44,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C45 | Cyclic group | 45 | 1 | C45 | 45,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C46 | Cyclic group | 46 | 1 | C46 | 46,2 |
D23 | Dihedral group | 23 | 2+ | D23 | 46,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C47 | Cyclic group | 47 | 1 | C47 | 47,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C48 | Cyclic group | 48 | 1 | C48 | 48,2 |
C3⋊C16 | The semidirect product of C3 and C16 acting via C16/C8=C2 | 48 | 2 | C3:C16 | 48,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C49 | Cyclic group | 49 | 1 | C49 | 49,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C50 | Cyclic group | 50 | 1 | C50 | 50,2 |
D25 | Dihedral group | 25 | 2+ | D25 | 50,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C51 | Cyclic group | 51 | 1 | C51 | 51,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C52 | Cyclic group | 52 | 1 | C52 | 52,2 |
Dic13 | Dicyclic group; = C13⋊2C4 | 52 | 2- | Dic13 | 52,1 |
C13⋊C4 | The semidirect product of C13 and C4 acting faithfully | 13 | 4+ | C13:C4 | 52,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C53 | Cyclic group | 53 | 1 | C53 | 53,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C54 | Cyclic group | 54 | 1 | C54 | 54,2 |
D27 | Dihedral group | 27 | 2+ | D27 | 54,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C55 | Cyclic group | 55 | 1 | C55 | 55,2 |
C11⋊C5 | The semidirect product of C11 and C5 acting faithfully | 11 | 5 | C11:C5 | 55,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C56 | Cyclic group | 56 | 1 | C56 | 56,2 |
C7⋊C8 | The semidirect product of C7 and C8 acting via C8/C4=C2 | 56 | 2 | C7:C8 | 56,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C57 | Cyclic group | 57 | 1 | C57 | 57,2 |
C19⋊C3 | The semidirect product of C19 and C3 acting faithfully | 19 | 3 | C19:C3 | 57,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C58 | Cyclic group | 58 | 1 | C58 | 58,2 |
D29 | Dihedral group | 29 | 2+ | D29 | 58,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C59 | Cyclic group | 59 | 1 | C59 | 59,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C60 | Cyclic group | 60 | 1 | C60 | 60,4 |
Dic15 | Dicyclic group; = C3⋊Dic5 | 60 | 2- | Dic15 | 60,3 |
C3⋊F5 | The semidirect product of C3 and F5 acting via F5/D5=C2 | 15 | 4 | C3:F5 | 60,7 |
C3×F5 | Direct product of C3 and F5 | 15 | 4 | C3xF5 | 60,6 |
C5×Dic3 | Direct product of C5 and Dic3 | 60 | 2 | C5xDic3 | 60,1 |
C3×Dic5 | Direct product of C3 and Dic5 | 60 | 2 | C3xDic5 | 60,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C61 | Cyclic group | 61 | 1 | C61 | 61,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C62 | Cyclic group | 62 | 1 | C62 | 62,2 |
D31 | Dihedral group | 31 | 2+ | D31 | 62,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C63 | Cyclic group | 63 | 1 | C63 | 63,2 |
C7⋊C9 | The semidirect product of C7 and C9 acting via C9/C3=C3 | 63 | 3 | C7:C9 | 63,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C64 | Cyclic group | 64 | 1 | C64 | 64,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C65 | Cyclic group | 65 | 1 | C65 | 65,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C66 | Cyclic group | 66 | 1 | C66 | 66,4 |
D33 | Dihedral group | 33 | 2+ | D33 | 66,3 |
S3×C11 | Direct product of C11 and S3 | 33 | 2 | S3xC11 | 66,1 |
C3×D11 | Direct product of C3 and D11 | 33 | 2 | C3xD11 | 66,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C67 | Cyclic group | 67 | 1 | C67 | 67,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C68 | Cyclic group | 68 | 1 | C68 | 68,2 |
Dic17 | Dicyclic group; = C17⋊2C4 | 68 | 2- | Dic17 | 68,1 |
C17⋊C4 | The semidirect product of C17 and C4 acting faithfully | 17 | 4+ | C17:C4 | 68,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C69 | Cyclic group | 69 | 1 | C69 | 69,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C70 | Cyclic group | 70 | 1 | C70 | 70,4 |
D35 | Dihedral group | 35 | 2+ | D35 | 70,3 |
C7×D5 | Direct product of C7 and D5 | 35 | 2 | C7xD5 | 70,1 |
C5×D7 | Direct product of C5 and D7 | 35 | 2 | C5xD7 | 70,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C71 | Cyclic group | 71 | 1 | C71 | 71,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C72 | Cyclic group | 72 | 1 | C72 | 72,2 |
C9⋊C8 | The semidirect product of C9 and C8 acting via C8/C4=C2 | 72 | 2 | C9:C8 | 72,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C73 | Cyclic group | 73 | 1 | C73 | 73,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C74 | Cyclic group | 74 | 1 | C74 | 74,2 |
D37 | Dihedral group | 37 | 2+ | D37 | 74,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C75 | Cyclic group | 75 | 1 | C75 | 75,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C76 | Cyclic group | 76 | 1 | C76 | 76,2 |
Dic19 | Dicyclic group; = C19⋊C4 | 76 | 2- | Dic19 | 76,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C77 | Cyclic group | 77 | 1 | C77 | 77,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C78 | Cyclic group | 78 | 1 | C78 | 78,6 |
D39 | Dihedral group | 39 | 2+ | D39 | 78,5 |
C13⋊C6 | The semidirect product of C13 and C6 acting faithfully | 13 | 6+ | C13:C6 | 78,1 |
S3×C13 | Direct product of C13 and S3 | 39 | 2 | S3xC13 | 78,3 |
C3×D13 | Direct product of C3 and D13 | 39 | 2 | C3xD13 | 78,4 |
C2×C13⋊C3 | Direct product of C2 and C13⋊C3 | 26 | 3 | C2xC13:C3 | 78,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C79 | Cyclic group | 79 | 1 | C79 | 79,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C80 | Cyclic group | 80 | 1 | C80 | 80,2 |
C5⋊C16 | The semidirect product of C5 and C16 acting via C16/C4=C4 | 80 | 4 | C5:C16 | 80,3 |
C5⋊2C16 | The semidirect product of C5 and C16 acting via C16/C8=C2 | 80 | 2 | C5:2C16 | 80,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C81 | Cyclic group | 81 | 1 | C81 | 81,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C82 | Cyclic group | 82 | 1 | C82 | 82,2 |
D41 | Dihedral group | 41 | 2+ | D41 | 82,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C83 | Cyclic group | 83 | 1 | C83 | 83,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C84 | Cyclic group | 84 | 1 | C84 | 84,6 |
Dic21 | Dicyclic group; = C3⋊Dic7 | 84 | 2- | Dic21 | 84,5 |
C7⋊C12 | The semidirect product of C7 and C12 acting via C12/C2=C6 | 28 | 6- | C7:C12 | 84,1 |
C7×Dic3 | Direct product of C7 and Dic3 | 84 | 2 | C7xDic3 | 84,3 |
C3×Dic7 | Direct product of C3 and Dic7 | 84 | 2 | C3xDic7 | 84,4 |
C4×C7⋊C3 | Direct product of C4 and C7⋊C3 | 28 | 3 | C4xC7:C3 | 84,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C85 | Cyclic group | 85 | 1 | C85 | 85,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C86 | Cyclic group | 86 | 1 | C86 | 86,2 |
D43 | Dihedral group | 43 | 2+ | D43 | 86,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C87 | Cyclic group | 87 | 1 | C87 | 87,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C88 | Cyclic group | 88 | 1 | C88 | 88,2 |
C11⋊C8 | The semidirect product of C11 and C8 acting via C8/C4=C2 | 88 | 2 | C11:C8 | 88,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C89 | Cyclic group | 89 | 1 | C89 | 89,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C90 | Cyclic group | 90 | 1 | C90 | 90,4 |
D45 | Dihedral group | 45 | 2+ | D45 | 90,3 |
C5×D9 | Direct product of C5 and D9 | 45 | 2 | C5xD9 | 90,1 |
C9×D5 | Direct product of C9 and D5 | 45 | 2 | C9xD5 | 90,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C91 | Cyclic group | 91 | 1 | C91 | 91,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C92 | Cyclic group | 92 | 1 | C92 | 92,2 |
Dic23 | Dicyclic group; = C23⋊C4 | 92 | 2- | Dic23 | 92,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C93 | Cyclic group | 93 | 1 | C93 | 93,2 |
C31⋊C3 | The semidirect product of C31 and C3 acting faithfully | 31 | 3 | C31:C3 | 93,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C94 | Cyclic group | 94 | 1 | C94 | 94,2 |
D47 | Dihedral group | 47 | 2+ | D47 | 94,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C95 | Cyclic group | 95 | 1 | C95 | 95,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C96 | Cyclic group | 96 | 1 | C96 | 96,2 |
C3⋊C32 | The semidirect product of C3 and C32 acting via C32/C16=C2 | 96 | 2 | C3:C32 | 96,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C97 | Cyclic group | 97 | 1 | C97 | 97,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C98 | Cyclic group | 98 | 1 | C98 | 98,2 |
D49 | Dihedral group | 49 | 2+ | D49 | 98,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C99 | Cyclic group | 99 | 1 | C99 | 99,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C100 | Cyclic group | 100 | 1 | C100 | 100,2 |
Dic25 | Dicyclic group; = C25⋊2C4 | 100 | 2- | Dic25 | 100,1 |
C25⋊C4 | The semidirect product of C25 and C4 acting faithfully | 25 | 4+ | C25:C4 | 100,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C101 | Cyclic group | 101 | 1 | C101 | 101,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C102 | Cyclic group | 102 | 1 | C102 | 102,4 |
D51 | Dihedral group | 51 | 2+ | D51 | 102,3 |
S3×C17 | Direct product of C17 and S3 | 51 | 2 | S3xC17 | 102,1 |
C3×D17 | Direct product of C3 and D17 | 51 | 2 | C3xD17 | 102,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C103 | Cyclic group | 103 | 1 | C103 | 103,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C104 | Cyclic group | 104 | 1 | C104 | 104,2 |
C13⋊C8 | The semidirect product of C13 and C8 acting via C8/C2=C4 | 104 | 4- | C13:C8 | 104,3 |
C13⋊2C8 | The semidirect product of C13 and C8 acting via C8/C4=C2 | 104 | 2 | C13:2C8 | 104,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C105 | Cyclic group | 105 | 1 | C105 | 105,2 |
C5×C7⋊C3 | Direct product of C5 and C7⋊C3 | 35 | 3 | C5xC7:C3 | 105,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C106 | Cyclic group | 106 | 1 | C106 | 106,2 |
D53 | Dihedral group | 53 | 2+ | D53 | 106,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C107 | Cyclic group | 107 | 1 | C107 | 107,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C108 | Cyclic group | 108 | 1 | C108 | 108,2 |
Dic27 | Dicyclic group; = C27⋊C4 | 108 | 2- | Dic27 | 108,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C109 | Cyclic group | 109 | 1 | C109 | 109,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C110 | Cyclic group | 110 | 1 | C110 | 110,6 |
D55 | Dihedral group | 55 | 2+ | D55 | 110,5 |
F11 | Frobenius group; = C11⋊C10 = AGL1(𝔽11) = Aut(D11) = Hol(C11) | 11 | 10+ | F11 | 110,1 |
D5×C11 | Direct product of C11 and D5 | 55 | 2 | D5xC11 | 110,3 |
C5×D11 | Direct product of C5 and D11 | 55 | 2 | C5xD11 | 110,4 |
C2×C11⋊C5 | Direct product of C2 and C11⋊C5 | 22 | 5 | C2xC11:C5 | 110,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C111 | Cyclic group | 111 | 1 | C111 | 111,2 |
C37⋊C3 | The semidirect product of C37 and C3 acting faithfully | 37 | 3 | C37:C3 | 111,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C112 | Cyclic group | 112 | 1 | C112 | 112,2 |
C7⋊C16 | The semidirect product of C7 and C16 acting via C16/C8=C2 | 112 | 2 | C7:C16 | 112,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C113 | Cyclic group | 113 | 1 | C113 | 113,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C114 | Cyclic group | 114 | 1 | C114 | 114,6 |
D57 | Dihedral group | 57 | 2+ | D57 | 114,5 |
C19⋊C6 | The semidirect product of C19 and C6 acting faithfully | 19 | 6+ | C19:C6 | 114,1 |
S3×C19 | Direct product of C19 and S3 | 57 | 2 | S3xC19 | 114,3 |
C3×D19 | Direct product of C3 and D19 | 57 | 2 | C3xD19 | 114,4 |
C2×C19⋊C3 | Direct product of C2 and C19⋊C3 | 38 | 3 | C2xC19:C3 | 114,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C115 | Cyclic group | 115 | 1 | C115 | 115,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C116 | Cyclic group | 116 | 1 | C116 | 116,2 |
Dic29 | Dicyclic group; = C29⋊2C4 | 116 | 2- | Dic29 | 116,1 |
C29⋊C4 | The semidirect product of C29 and C4 acting faithfully | 29 | 4+ | C29:C4 | 116,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C117 | Cyclic group | 117 | 1 | C117 | 117,2 |
C13⋊C9 | The semidirect product of C13 and C9 acting via C9/C3=C3 | 117 | 3 | C13:C9 | 117,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C118 | Cyclic group | 118 | 1 | C118 | 118,2 |
D59 | Dihedral group | 59 | 2+ | D59 | 118,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C119 | Cyclic group | 119 | 1 | C119 | 119,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C120 | Cyclic group | 120 | 1 | C120 | 120,4 |
C15⋊3C8 | 1st semidirect product of C15 and C8 acting via C8/C4=C2 | 120 | 2 | C15:3C8 | 120,3 |
C15⋊C8 | 1st semidirect product of C15 and C8 acting via C8/C2=C4 | 120 | 4 | C15:C8 | 120,7 |
C5×C3⋊C8 | Direct product of C5 and C3⋊C8 | 120 | 2 | C5xC3:C8 | 120,1 |
C3×C5⋊C8 | Direct product of C3 and C5⋊C8 | 120 | 4 | C3xC5:C8 | 120,6 |
C3×C5⋊2C8 | Direct product of C3 and C5⋊2C8 | 120 | 2 | C3xC5:2C8 | 120,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C121 | Cyclic group | 121 | 1 | C121 | 121,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C122 | Cyclic group | 122 | 1 | C122 | 122,2 |
D61 | Dihedral group | 61 | 2+ | D61 | 122,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C123 | Cyclic group | 123 | 1 | C123 | 123,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C124 | Cyclic group | 124 | 1 | C124 | 124,2 |
Dic31 | Dicyclic group; = C31⋊C4 | 124 | 2- | Dic31 | 124,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C125 | Cyclic group | 125 | 1 | C125 | 125,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C126 | Cyclic group | 126 | 1 | C126 | 126,6 |
D63 | Dihedral group | 63 | 2+ | D63 | 126,5 |
C7⋊C18 | The semidirect product of C7 and C18 acting via C18/C3=C6 | 63 | 6 | C7:C18 | 126,1 |
C7×D9 | Direct product of C7 and D9 | 63 | 2 | C7xD9 | 126,3 |
C9×D7 | Direct product of C9 and D7 | 63 | 2 | C9xD7 | 126,4 |
C2×C7⋊C9 | Direct product of C2 and C7⋊C9 | 126 | 3 | C2xC7:C9 | 126,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C127 | Cyclic group | 127 | 1 | C127 | 127,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C128 | Cyclic group | 128 | 1 | C128 | 128,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C129 | Cyclic group | 129 | 1 | C129 | 129,2 |
C43⋊C3 | The semidirect product of C43 and C3 acting faithfully | 43 | 3 | C43:C3 | 129,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C130 | Cyclic group | 130 | 1 | C130 | 130,4 |
D65 | Dihedral group | 65 | 2+ | D65 | 130,3 |
D5×C13 | Direct product of C13 and D5 | 65 | 2 | D5xC13 | 130,1 |
C5×D13 | Direct product of C5 and D13 | 65 | 2 | C5xD13 | 130,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C131 | Cyclic group | 131 | 1 | C131 | 131,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C132 | Cyclic group | 132 | 1 | C132 | 132,4 |
Dic33 | Dicyclic group; = C33⋊1C4 | 132 | 2- | Dic33 | 132,3 |
C11×Dic3 | Direct product of C11 and Dic3 | 132 | 2 | C11xDic3 | 132,1 |
C3×Dic11 | Direct product of C3 and Dic11 | 132 | 2 | C3xDic11 | 132,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C133 | Cyclic group | 133 | 1 | C133 | 133,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C134 | Cyclic group | 134 | 1 | C134 | 134,2 |
D67 | Dihedral group | 67 | 2+ | D67 | 134,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C135 | Cyclic group | 135 | 1 | C135 | 135,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C136 | Cyclic group | 136 | 1 | C136 | 136,2 |
C17⋊C8 | The semidirect product of C17 and C8 acting faithfully | 17 | 8+ | C17:C8 | 136,12 |
C17⋊3C8 | The semidirect product of C17 and C8 acting via C8/C4=C2 | 136 | 2 | C17:3C8 | 136,1 |
C17⋊2C8 | The semidirect product of C17 and C8 acting via C8/C2=C4 | 136 | 4- | C17:2C8 | 136,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C137 | Cyclic group | 137 | 1 | C137 | 137,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C138 | Cyclic group | 138 | 1 | C138 | 138,4 |
D69 | Dihedral group | 69 | 2+ | D69 | 138,3 |
S3×C23 | Direct product of C23 and S3 | 69 | 2 | S3xC23 | 138,1 |
C3×D23 | Direct product of C3 and D23 | 69 | 2 | C3xD23 | 138,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C139 | Cyclic group | 139 | 1 | C139 | 139,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C140 | Cyclic group | 140 | 1 | C140 | 140,4 |
Dic35 | Dicyclic group; = C7⋊Dic5 | 140 | 2- | Dic35 | 140,3 |
C7⋊F5 | The semidirect product of C7 and F5 acting via F5/D5=C2 | 35 | 4 | C7:F5 | 140,6 |
C7×F5 | Direct product of C7 and F5 | 35 | 4 | C7xF5 | 140,5 |
C7×Dic5 | Direct product of C7 and Dic5 | 140 | 2 | C7xDic5 | 140,1 |
C5×Dic7 | Direct product of C5 and Dic7 | 140 | 2 | C5xDic7 | 140,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C141 | Cyclic group | 141 | 1 | C141 | 141,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C142 | Cyclic group | 142 | 1 | C142 | 142,2 |
D71 | Dihedral group | 71 | 2+ | D71 | 142,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C143 | Cyclic group | 143 | 1 | C143 | 143,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C144 | Cyclic group | 144 | 1 | C144 | 144,2 |
C9⋊C16 | The semidirect product of C9 and C16 acting via C16/C8=C2 | 144 | 2 | C9:C16 | 144,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C145 | Cyclic group | 145 | 1 | C145 | 145,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C146 | Cyclic group | 146 | 1 | C146 | 146,2 |
D73 | Dihedral group | 73 | 2+ | D73 | 146,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C147 | Cyclic group | 147 | 1 | C147 | 147,2 |
C49⋊C3 | The semidirect product of C49 and C3 acting faithfully | 49 | 3 | C49:C3 | 147,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C148 | Cyclic group | 148 | 1 | C148 | 148,2 |
Dic37 | Dicyclic group; = C37⋊2C4 | 148 | 2- | Dic37 | 148,1 |
C37⋊C4 | The semidirect product of C37 and C4 acting faithfully | 37 | 4+ | C37:C4 | 148,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C149 | Cyclic group | 149 | 1 | C149 | 149,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C150 | Cyclic group | 150 | 1 | C150 | 150,4 |
D75 | Dihedral group | 75 | 2+ | D75 | 150,3 |
S3×C25 | Direct product of C25 and S3 | 75 | 2 | S3xC25 | 150,1 |
C3×D25 | Direct product of C3 and D25 | 75 | 2 | C3xD25 | 150,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C151 | Cyclic group | 151 | 1 | C151 | 151,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C152 | Cyclic group | 152 | 1 | C152 | 152,2 |
C19⋊C8 | The semidirect product of C19 and C8 acting via C8/C4=C2 | 152 | 2 | C19:C8 | 152,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C153 | Cyclic group | 153 | 1 | C153 | 153,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C154 | Cyclic group | 154 | 1 | C154 | 154,4 |
D77 | Dihedral group | 77 | 2+ | D77 | 154,3 |
C11×D7 | Direct product of C11 and D7 | 77 | 2 | C11xD7 | 154,1 |
C7×D11 | Direct product of C7 and D11 | 77 | 2 | C7xD11 | 154,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C155 | Cyclic group | 155 | 1 | C155 | 155,2 |
C31⋊C5 | The semidirect product of C31 and C5 acting faithfully | 31 | 5 | C31:C5 | 155,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C156 | Cyclic group | 156 | 1 | C156 | 156,6 |
F13 | Frobenius group; = C13⋊C12 = AGL1(𝔽13) = Aut(D13) = Hol(C13) | 13 | 12+ | F13 | 156,7 |
Dic39 | Dicyclic group; = C39⋊3C4 | 156 | 2- | Dic39 | 156,5 |
C39⋊C4 | 1st semidirect product of C39 and C4 acting faithfully | 39 | 4 | C39:C4 | 156,10 |
C26.C6 | The non-split extension by C26 of C6 acting faithfully | 52 | 6- | C26.C6 | 156,1 |
Dic3×C13 | Direct product of C13 and Dic3 | 156 | 2 | Dic3xC13 | 156,3 |
C3×Dic13 | Direct product of C3 and Dic13 | 156 | 2 | C3xDic13 | 156,4 |
C3×C13⋊C4 | Direct product of C3 and C13⋊C4 | 39 | 4 | C3xC13:C4 | 156,9 |
C4×C13⋊C3 | Direct product of C4 and C13⋊C3 | 52 | 3 | C4xC13:C3 | 156,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C157 | Cyclic group | 157 | 1 | C157 | 157,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C158 | Cyclic group | 158 | 1 | C158 | 158,2 |
D79 | Dihedral group | 79 | 2+ | D79 | 158,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C159 | Cyclic group | 159 | 1 | C159 | 159,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C160 | Cyclic group | 160 | 1 | C160 | 160,2 |
C5⋊C32 | The semidirect product of C5 and C32 acting via C32/C8=C4 | 160 | 4 | C5:C32 | 160,3 |
C5⋊2C32 | The semidirect product of C5 and C32 acting via C32/C16=C2 | 160 | 2 | C5:2C32 | 160,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C161 | Cyclic group | 161 | 1 | C161 | 161,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C162 | Cyclic group | 162 | 1 | C162 | 162,2 |
D81 | Dihedral group | 81 | 2+ | D81 | 162,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C163 | Cyclic group | 163 | 1 | C163 | 163,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C164 | Cyclic group | 164 | 1 | C164 | 164,2 |
Dic41 | Dicyclic group; = C41⋊2C4 | 164 | 2- | Dic41 | 164,1 |
C41⋊C4 | The semidirect product of C41 and C4 acting faithfully | 41 | 4+ | C41:C4 | 164,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C165 | Cyclic group | 165 | 1 | C165 | 165,2 |
C3×C11⋊C5 | Direct product of C3 and C11⋊C5 | 33 | 5 | C3xC11:C5 | 165,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C166 | Cyclic group | 166 | 1 | C166 | 166,2 |
D83 | Dihedral group | 83 | 2+ | D83 | 166,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C167 | Cyclic group | 167 | 1 | C167 | 167,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C168 | Cyclic group | 168 | 1 | C168 | 168,6 |
C7⋊C24 | The semidirect product of C7 and C24 acting via C24/C4=C6 | 56 | 6 | C7:C24 | 168,1 |
C21⋊C8 | 1st semidirect product of C21 and C8 acting via C8/C4=C2 | 168 | 2 | C21:C8 | 168,5 |
C8×C7⋊C3 | Direct product of C8 and C7⋊C3 | 56 | 3 | C8xC7:C3 | 168,2 |
C7×C3⋊C8 | Direct product of C7 and C3⋊C8 | 168 | 2 | C7xC3:C8 | 168,3 |
C3×C7⋊C8 | Direct product of C3 and C7⋊C8 | 168 | 2 | C3xC7:C8 | 168,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C169 | Cyclic group | 169 | 1 | C169 | 169,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C170 | Cyclic group | 170 | 1 | C170 | 170,4 |
D85 | Dihedral group | 85 | 2+ | D85 | 170,3 |
D5×C17 | Direct product of C17 and D5 | 85 | 2 | D5xC17 | 170,1 |
C5×D17 | Direct product of C5 and D17 | 85 | 2 | C5xD17 | 170,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C171 | Cyclic group | 171 | 1 | C171 | 171,2 |
C19⋊C9 | The semidirect product of C19 and C9 acting faithfully | 19 | 9 | C19:C9 | 171,3 |
C19⋊2C9 | The semidirect product of C19 and C9 acting via C9/C3=C3 | 171 | 3 | C19:2C9 | 171,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C172 | Cyclic group | 172 | 1 | C172 | 172,2 |
Dic43 | Dicyclic group; = C43⋊C4 | 172 | 2- | Dic43 | 172,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C173 | Cyclic group | 173 | 1 | C173 | 173,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C174 | Cyclic group | 174 | 1 | C174 | 174,4 |
D87 | Dihedral group | 87 | 2+ | D87 | 174,3 |
S3×C29 | Direct product of C29 and S3 | 87 | 2 | S3xC29 | 174,1 |
C3×D29 | Direct product of C3 and D29 | 87 | 2 | C3xD29 | 174,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C175 | Cyclic group | 175 | 1 | C175 | 175,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C176 | Cyclic group | 176 | 1 | C176 | 176,2 |
C11⋊C16 | The semidirect product of C11 and C16 acting via C16/C8=C2 | 176 | 2 | C11:C16 | 176,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C177 | Cyclic group | 177 | 1 | C177 | 177,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C178 | Cyclic group | 178 | 1 | C178 | 178,2 |
D89 | Dihedral group | 89 | 2+ | D89 | 178,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C179 | Cyclic group | 179 | 1 | C179 | 179,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C180 | Cyclic group | 180 | 1 | C180 | 180,4 |
Dic45 | Dicyclic group; = C9⋊Dic5 | 180 | 2- | Dic45 | 180,3 |
C9⋊F5 | The semidirect product of C9 and F5 acting via F5/D5=C2 | 45 | 4 | C9:F5 | 180,6 |
C9×F5 | Direct product of C9 and F5 | 45 | 4 | C9xF5 | 180,5 |
C5×Dic9 | Direct product of C5 and Dic9 | 180 | 2 | C5xDic9 | 180,1 |
C9×Dic5 | Direct product of C9 and Dic5 | 180 | 2 | C9xDic5 | 180,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C181 | Cyclic group | 181 | 1 | C181 | 181,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C182 | Cyclic group | 182 | 1 | C182 | 182,4 |
D91 | Dihedral group | 91 | 2+ | D91 | 182,3 |
C13×D7 | Direct product of C13 and D7 | 91 | 2 | C13xD7 | 182,1 |
C7×D13 | Direct product of C7 and D13 | 91 | 2 | C7xD13 | 182,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C183 | Cyclic group | 183 | 1 | C183 | 183,2 |
C61⋊C3 | The semidirect product of C61 and C3 acting faithfully | 61 | 3 | C61:C3 | 183,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C184 | Cyclic group | 184 | 1 | C184 | 184,2 |
C23⋊C8 | The semidirect product of C23 and C8 acting via C8/C4=C2 | 184 | 2 | C23:C8 | 184,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C185 | Cyclic group | 185 | 1 | C185 | 185,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C186 | Cyclic group | 186 | 1 | C186 | 186,6 |
D93 | Dihedral group | 93 | 2+ | D93 | 186,5 |
C31⋊C6 | The semidirect product of C31 and C6 acting faithfully | 31 | 6+ | C31:C6 | 186,1 |
S3×C31 | Direct product of C31 and S3 | 93 | 2 | S3xC31 | 186,3 |
C3×D31 | Direct product of C3 and D31 | 93 | 2 | C3xD31 | 186,4 |
C2×C31⋊C3 | Direct product of C2 and C31⋊C3 | 62 | 3 | C2xC31:C3 | 186,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C187 | Cyclic group | 187 | 1 | C187 | 187,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C188 | Cyclic group | 188 | 1 | C188 | 188,2 |
Dic47 | Dicyclic group; = C47⋊C4 | 188 | 2- | Dic47 | 188,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C189 | Cyclic group | 189 | 1 | C189 | 189,2 |
C7⋊C27 | The semidirect product of C7 and C27 acting via C27/C9=C3 | 189 | 3 | C7:C27 | 189,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C190 | Cyclic group | 190 | 1 | C190 | 190,4 |
D95 | Dihedral group | 95 | 2+ | D95 | 190,3 |
D5×C19 | Direct product of C19 and D5 | 95 | 2 | D5xC19 | 190,1 |
C5×D19 | Direct product of C5 and D19 | 95 | 2 | C5xD19 | 190,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C191 | Cyclic group | 191 | 1 | C191 | 191,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C192 | Cyclic group | 192 | 1 | C192 | 192,2 |
C3⋊C64 | The semidirect product of C3 and C64 acting via C64/C32=C2 | 192 | 2 | C3:C64 | 192,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C193 | Cyclic group | 193 | 1 | C193 | 193,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C194 | Cyclic group | 194 | 1 | C194 | 194,2 |
D97 | Dihedral group | 97 | 2+ | D97 | 194,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C195 | Cyclic group | 195 | 1 | C195 | 195,2 |
C5×C13⋊C3 | Direct product of C5 and C13⋊C3 | 65 | 3 | C5xC13:C3 | 195,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C196 | Cyclic group | 196 | 1 | C196 | 196,2 |
Dic49 | Dicyclic group; = C49⋊C4 | 196 | 2- | Dic49 | 196,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C197 | Cyclic group | 197 | 1 | C197 | 197,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C198 | Cyclic group | 198 | 1 | C198 | 198,4 |
D99 | Dihedral group | 99 | 2+ | D99 | 198,3 |
C11×D9 | Direct product of C11 and D9 | 99 | 2 | C11xD9 | 198,1 |
C9×D11 | Direct product of C9 and D11 | 99 | 2 | C9xD11 | 198,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C199 | Cyclic group | 199 | 1 | C199 | 199,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C200 | Cyclic group | 200 | 1 | C200 | 200,2 |
C25⋊C8 | The semidirect product of C25 and C8 acting via C8/C2=C4 | 200 | 4- | C25:C8 | 200,3 |
C25⋊2C8 | The semidirect product of C25 and C8 acting via C8/C4=C2 | 200 | 2 | C25:2C8 | 200,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C201 | Cyclic group | 201 | 1 | C201 | 201,2 |
C67⋊C3 | The semidirect product of C67 and C3 acting faithfully | 67 | 3 | C67:C3 | 201,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C202 | Cyclic group | 202 | 1 | C202 | 202,2 |
D101 | Dihedral group | 101 | 2+ | D101 | 202,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C203 | Cyclic group | 203 | 1 | C203 | 203,2 |
C29⋊C7 | The semidirect product of C29 and C7 acting faithfully | 29 | 7 | C29:C7 | 203,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C204 | Cyclic group | 204 | 1 | C204 | 204,4 |
Dic51 | Dicyclic group; = C51⋊3C4 | 204 | 2- | Dic51 | 204,3 |
C51⋊C4 | 1st semidirect product of C51 and C4 acting faithfully | 51 | 4 | C51:C4 | 204,6 |
Dic3×C17 | Direct product of C17 and Dic3 | 204 | 2 | Dic3xC17 | 204,1 |
C3×Dic17 | Direct product of C3 and Dic17 | 204 | 2 | C3xDic17 | 204,2 |
C3×C17⋊C4 | Direct product of C3 and C17⋊C4 | 51 | 4 | C3xC17:C4 | 204,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C205 | Cyclic group | 205 | 1 | C205 | 205,2 |
C41⋊C5 | The semidirect product of C41 and C5 acting faithfully | 41 | 5 | C41:C5 | 205,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C206 | Cyclic group | 206 | 1 | C206 | 206,2 |
D103 | Dihedral group | 103 | 2+ | D103 | 206,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C207 | Cyclic group | 207 | 1 | C207 | 207,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C208 | Cyclic group | 208 | 1 | C208 | 208,2 |
C13⋊C16 | The semidirect product of C13 and C16 acting via C16/C4=C4 | 208 | 4 | C13:C16 | 208,3 |
C13⋊2C16 | The semidirect product of C13 and C16 acting via C16/C8=C2 | 208 | 2 | C13:2C16 | 208,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C209 | Cyclic group | 209 | 1 | C209 | 209,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C210 | Cyclic group | 210 | 1 | C210 | 210,12 |
D105 | Dihedral group | 105 | 2+ | D105 | 210,11 |
C5⋊F7 | The semidirect product of C5 and F7 acting via F7/C7⋊C3=C2 | 35 | 6+ | C5:F7 | 210,3 |
C5×F7 | Direct product of C5 and F7 | 35 | 6 | C5xF7 | 210,1 |
S3×C35 | Direct product of C35 and S3 | 105 | 2 | S3xC35 | 210,8 |
D7×C15 | Direct product of C15 and D7 | 105 | 2 | D7xC15 | 210,5 |
D5×C21 | Direct product of C21 and D5 | 105 | 2 | D5xC21 | 210,6 |
C3×D35 | Direct product of C3 and D35 | 105 | 2 | C3xD35 | 210,7 |
C5×D21 | Direct product of C5 and D21 | 105 | 2 | C5xD21 | 210,9 |
C7×D15 | Direct product of C7 and D15 | 105 | 2 | C7xD15 | 210,10 |
D5×C7⋊C3 | Direct product of D5 and C7⋊C3 | 35 | 6 | D5xC7:C3 | 210,2 |
C10×C7⋊C3 | Direct product of C10 and C7⋊C3 | 70 | 3 | C10xC7:C3 | 210,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C211 | Cyclic group | 211 | 1 | C211 | 211,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C212 | Cyclic group | 212 | 1 | C212 | 212,2 |
Dic53 | Dicyclic group; = C53⋊2C4 | 212 | 2- | Dic53 | 212,1 |
C53⋊C4 | The semidirect product of C53 and C4 acting faithfully | 53 | 4+ | C53:C4 | 212,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C213 | Cyclic group | 213 | 1 | C213 | 213,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C214 | Cyclic group | 214 | 1 | C214 | 214,2 |
D107 | Dihedral group | 107 | 2+ | D107 | 214,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C215 | Cyclic group | 215 | 1 | C215 | 215,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C216 | Cyclic group | 216 | 1 | C216 | 216,2 |
C27⋊C8 | The semidirect product of C27 and C8 acting via C8/C4=C2 | 216 | 2 | C27:C8 | 216,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C217 | Cyclic group | 217 | 1 | C217 | 217,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C218 | Cyclic group | 218 | 1 | C218 | 218,2 |
D109 | Dihedral group | 109 | 2+ | D109 | 218,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C219 | Cyclic group | 219 | 1 | C219 | 219,2 |
C73⋊C3 | The semidirect product of C73 and C3 acting faithfully | 73 | 3 | C73:C3 | 219,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C220 | Cyclic group | 220 | 1 | C220 | 220,6 |
Dic55 | Dicyclic group; = C55⋊3C4 | 220 | 2- | Dic55 | 220,5 |
C11⋊C20 | The semidirect product of C11 and C20 acting via C20/C2=C10 | 44 | 10- | C11:C20 | 220,1 |
C11⋊F5 | The semidirect product of C11 and F5 acting via F5/D5=C2 | 55 | 4 | C11:F5 | 220,10 |
C11×F5 | Direct product of C11 and F5 | 55 | 4 | C11xF5 | 220,9 |
C11×Dic5 | Direct product of C11 and Dic5 | 220 | 2 | C11xDic5 | 220,3 |
C5×Dic11 | Direct product of C5 and Dic11 | 220 | 2 | C5xDic11 | 220,4 |
C4×C11⋊C5 | Direct product of C4 and C11⋊C5 | 44 | 5 | C4xC11:C5 | 220,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C221 | Cyclic group | 221 | 1 | C221 | 221,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C222 | Cyclic group | 222 | 1 | C222 | 222,6 |
D111 | Dihedral group | 111 | 2+ | D111 | 222,5 |
C37⋊C6 | The semidirect product of C37 and C6 acting faithfully | 37 | 6+ | C37:C6 | 222,1 |
S3×C37 | Direct product of C37 and S3 | 111 | 2 | S3xC37 | 222,3 |
C3×D37 | Direct product of C3 and D37 | 111 | 2 | C3xD37 | 222,4 |
C2×C37⋊C3 | Direct product of C2 and C37⋊C3 | 74 | 3 | C2xC37:C3 | 222,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C223 | Cyclic group | 223 | 1 | C223 | 223,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C224 | Cyclic group | 224 | 1 | C224 | 224,2 |
C7⋊C32 | The semidirect product of C7 and C32 acting via C32/C16=C2 | 224 | 2 | C7:C32 | 224,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C225 | Cyclic group | 225 | 1 | C225 | 225,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C226 | Cyclic group | 226 | 1 | C226 | 226,2 |
D113 | Dihedral group | 113 | 2+ | D113 | 226,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C227 | Cyclic group | 227 | 1 | C227 | 227,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C228 | Cyclic group | 228 | 1 | C228 | 228,6 |
Dic57 | Dicyclic group; = C57⋊1C4 | 228 | 2- | Dic57 | 228,5 |
C19⋊C12 | The semidirect product of C19 and C12 acting via C12/C2=C6 | 76 | 6- | C19:C12 | 228,1 |
Dic3×C19 | Direct product of C19 and Dic3 | 228 | 2 | Dic3xC19 | 228,3 |
C3×Dic19 | Direct product of C3 and Dic19 | 228 | 2 | C3xDic19 | 228,4 |
C4×C19⋊C3 | Direct product of C4 and C19⋊C3 | 76 | 3 | C4xC19:C3 | 228,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C229 | Cyclic group | 229 | 1 | C229 | 229,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C230 | Cyclic group | 230 | 1 | C230 | 230,4 |
D115 | Dihedral group | 115 | 2+ | D115 | 230,3 |
D5×C23 | Direct product of C23 and D5 | 115 | 2 | D5xC23 | 230,1 |
C5×D23 | Direct product of C5 and D23 | 115 | 2 | C5xD23 | 230,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C231 | Cyclic group | 231 | 1 | C231 | 231,2 |
C11×C7⋊C3 | Direct product of C11 and C7⋊C3 | 77 | 3 | C11xC7:C3 | 231,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C232 | Cyclic group | 232 | 1 | C232 | 232,2 |
C29⋊C8 | The semidirect product of C29 and C8 acting via C8/C2=C4 | 232 | 4- | C29:C8 | 232,3 |
C29⋊2C8 | The semidirect product of C29 and C8 acting via C8/C4=C2 | 232 | 2 | C29:2C8 | 232,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C233 | Cyclic group | 233 | 1 | C233 | 233,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C234 | Cyclic group | 234 | 1 | C234 | 234,6 |
D117 | Dihedral group | 117 | 2+ | D117 | 234,5 |
C13⋊C18 | The semidirect product of C13 and C18 acting via C18/C3=C6 | 117 | 6 | C13:C18 | 234,1 |
C13×D9 | Direct product of C13 and D9 | 117 | 2 | C13xD9 | 234,3 |
C9×D13 | Direct product of C9 and D13 | 117 | 2 | C9xD13 | 234,4 |
C2×C13⋊C9 | Direct product of C2 and C13⋊C9 | 234 | 3 | C2xC13:C9 | 234,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C235 | Cyclic group | 235 | 1 | C235 | 235,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C236 | Cyclic group | 236 | 1 | C236 | 236,2 |
Dic59 | Dicyclic group; = C59⋊C4 | 236 | 2- | Dic59 | 236,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C237 | Cyclic group | 237 | 1 | C237 | 237,2 |
C79⋊C3 | The semidirect product of C79 and C3 acting faithfully | 79 | 3 | C79:C3 | 237,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C238 | Cyclic group | 238 | 1 | C238 | 238,4 |
D119 | Dihedral group | 119 | 2+ | D119 | 238,3 |
D7×C17 | Direct product of C17 and D7 | 119 | 2 | D7xC17 | 238,1 |
C7×D17 | Direct product of C7 and D17 | 119 | 2 | C7xD17 | 238,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C239 | Cyclic group | 239 | 1 | C239 | 239,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C240 | Cyclic group | 240 | 1 | C240 | 240,4 |
C15⋊3C16 | 1st semidirect product of C15 and C16 acting via C16/C8=C2 | 240 | 2 | C15:3C16 | 240,3 |
C15⋊C16 | 1st semidirect product of C15 and C16 acting via C16/C4=C4 | 240 | 4 | C15:C16 | 240,6 |
C5×C3⋊C16 | Direct product of C5 and C3⋊C16 | 240 | 2 | C5xC3:C16 | 240,1 |
C3×C5⋊C16 | Direct product of C3 and C5⋊C16 | 240 | 4 | C3xC5:C16 | 240,5 |
C3×C5⋊2C16 | Direct product of C3 and C5⋊2C16 | 240 | 2 | C3xC5:2C16 | 240,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C241 | Cyclic group | 241 | 1 | C241 | 241,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C242 | Cyclic group | 242 | 1 | C242 | 242,2 |
D121 | Dihedral group | 121 | 2+ | D121 | 242,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C243 | Cyclic group | 243 | 1 | C243 | 243,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C244 | Cyclic group | 244 | 1 | C244 | 244,2 |
Dic61 | Dicyclic group; = C61⋊2C4 | 244 | 2- | Dic61 | 244,1 |
C61⋊C4 | The semidirect product of C61 and C4 acting faithfully | 61 | 4+ | C61:C4 | 244,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C245 | Cyclic group | 245 | 1 | C245 | 245,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C246 | Cyclic group | 246 | 1 | C246 | 246,4 |
D123 | Dihedral group | 123 | 2+ | D123 | 246,3 |
S3×C41 | Direct product of C41 and S3 | 123 | 2 | S3xC41 | 246,1 |
C3×D41 | Direct product of C3 and D41 | 123 | 2 | C3xD41 | 246,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C247 | Cyclic group | 247 | 1 | C247 | 247,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C248 | Cyclic group | 248 | 1 | C248 | 248,2 |
C31⋊C8 | The semidirect product of C31 and C8 acting via C8/C4=C2 | 248 | 2 | C31:C8 | 248,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C249 | Cyclic group | 249 | 1 | C249 | 249,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C250 | Cyclic group | 250 | 1 | C250 | 250,2 |
D125 | Dihedral group | 125 | 2+ | D125 | 250,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C251 | Cyclic group | 251 | 1 | C251 | 251,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C252 | Cyclic group | 252 | 1 | C252 | 252,6 |
Dic63 | Dicyclic group; = C9⋊Dic7 | 252 | 2- | Dic63 | 252,5 |
C7⋊C36 | The semidirect product of C7 and C36 acting via C36/C6=C6 | 252 | 6 | C7:C36 | 252,1 |
C7×Dic9 | Direct product of C7 and Dic9 | 252 | 2 | C7xDic9 | 252,3 |
C9×Dic7 | Direct product of C9 and Dic7 | 252 | 2 | C9xDic7 | 252,4 |
C4×C7⋊C9 | Direct product of C4 and C7⋊C9 | 252 | 3 | C4xC7:C9 | 252,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C253 | Cyclic group | 253 | 1 | C253 | 253,2 |
C23⋊C11 | The semidirect product of C23 and C11 acting faithfully | 23 | 11 | C23:C11 | 253,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C254 | Cyclic group | 254 | 1 | C254 | 254,2 |
D127 | Dihedral group | 127 | 2+ | D127 | 254,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C255 | Cyclic group | 255 | 1 | C255 | 255,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C257 | Cyclic group | 257 | 1 | C257 | 257,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C258 | Cyclic group | 258 | 1 | C258 | 258,6 |
D129 | Dihedral group | 129 | 2+ | D129 | 258,5 |
C43⋊C6 | The semidirect product of C43 and C6 acting faithfully | 43 | 6+ | C43:C6 | 258,1 |
S3×C43 | Direct product of C43 and S3 | 129 | 2 | S3xC43 | 258,3 |
C3×D43 | Direct product of C3 and D43 | 129 | 2 | C3xD43 | 258,4 |
C2×C43⋊C3 | Direct product of C2 and C43⋊C3 | 86 | 3 | C2xC43:C3 | 258,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C259 | Cyclic group | 259 | 1 | C259 | 259,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C260 | Cyclic group | 260 | 1 | C260 | 260,4 |
Dic65 | Dicyclic group; = C65⋊7C4 | 260 | 2- | Dic65 | 260,3 |
C65⋊C4 | 3rd semidirect product of C65 and C4 acting faithfully | 65 | 4 | C65:C4 | 260,6 |
C65⋊2C4 | 2nd semidirect product of C65 and C4 acting faithfully | 65 | 4+ | C65:2C4 | 260,10 |
C13⋊3F5 | The semidirect product of C13 and F5 acting via F5/D5=C2 | 65 | 4 | C13:3F5 | 260,8 |
C13⋊F5 | 1st semidirect product of C13 and F5 acting via F5/C5=C4 | 65 | 4+ | C13:F5 | 260,9 |
C13×F5 | Direct product of C13 and F5 | 65 | 4 | C13xF5 | 260,7 |
C13×Dic5 | Direct product of C13 and Dic5 | 260 | 2 | C13xDic5 | 260,1 |
C5×Dic13 | Direct product of C5 and Dic13 | 260 | 2 | C5xDic13 | 260,2 |
C5×C13⋊C4 | Direct product of C5 and C13⋊C4 | 65 | 4 | C5xC13:C4 | 260,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C261 | Cyclic group | 261 | 1 | C261 | 261,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C262 | Cyclic group | 262 | 1 | C262 | 262,2 |
D131 | Dihedral group | 131 | 2+ | D131 | 262,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C263 | Cyclic group | 263 | 1 | C263 | 263,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C264 | Cyclic group | 264 | 1 | C264 | 264,4 |
C33⋊C8 | 1st semidirect product of C33 and C8 acting via C8/C4=C2 | 264 | 2 | C33:C8 | 264,3 |
C11×C3⋊C8 | Direct product of C11 and C3⋊C8 | 264 | 2 | C11xC3:C8 | 264,1 |
C3×C11⋊C8 | Direct product of C3 and C11⋊C8 | 264 | 2 | C3xC11:C8 | 264,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C265 | Cyclic group | 265 | 1 | C265 | 265,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C266 | Cyclic group | 266 | 1 | C266 | 266,4 |
D133 | Dihedral group | 133 | 2+ | D133 | 266,3 |
D7×C19 | Direct product of C19 and D7 | 133 | 2 | D7xC19 | 266,1 |
C7×D19 | Direct product of C7 and D19 | 133 | 2 | C7xD19 | 266,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C267 | Cyclic group | 267 | 1 | C267 | 267,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C268 | Cyclic group | 268 | 1 | C268 | 268,2 |
Dic67 | Dicyclic group; = C67⋊C4 | 268 | 2- | Dic67 | 268,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C269 | Cyclic group | 269 | 1 | C269 | 269,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C270 | Cyclic group | 270 | 1 | C270 | 270,4 |
D135 | Dihedral group | 135 | 2+ | D135 | 270,3 |
C5×D27 | Direct product of C5 and D27 | 135 | 2 | C5xD27 | 270,1 |
D5×C27 | Direct product of C27 and D5 | 135 | 2 | D5xC27 | 270,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C271 | Cyclic group | 271 | 1 | C271 | 271,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C272 | Cyclic group | 272 | 1 | C272 | 272,2 |
F17 | Frobenius group; = C17⋊C16 = AGL1(𝔽17) = Aut(D17) = Hol(C17) | 17 | 16+ | F17 | 272,50 |
C17⋊4C16 | The semidirect product of C17 and C16 acting via C16/C8=C2 | 272 | 2 | C17:4C16 | 272,1 |
C17⋊3C16 | The semidirect product of C17 and C16 acting via C16/C4=C4 | 272 | 4 | C17:3C16 | 272,3 |
C34.C8 | The non-split extension by C34 of C8 acting faithfully | 272 | 8- | C34.C8 | 272,28 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C273 | Cyclic group | 273 | 1 | C273 | 273,5 |
C91⋊C3 | 3rd semidirect product of C91 and C3 acting faithfully | 91 | 3 | C91:C3 | 273,3 |
C91⋊4C3 | 4th semidirect product of C91 and C3 acting faithfully | 91 | 3 | C91:4C3 | 273,4 |
C13×C7⋊C3 | Direct product of C13 and C7⋊C3 | 91 | 3 | C13xC7:C3 | 273,1 |
C7×C13⋊C3 | Direct product of C7 and C13⋊C3 | 91 | 3 | C7xC13:C3 | 273,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C274 | Cyclic group | 274 | 1 | C274 | 274,2 |
D137 | Dihedral group | 137 | 2+ | D137 | 274,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C275 | Cyclic group | 275 | 1 | C275 | 275,2 |
C11⋊C25 | The semidirect product of C11 and C25 acting via C25/C5=C5 | 275 | 5 | C11:C25 | 275,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C276 | Cyclic group | 276 | 1 | C276 | 276,4 |
Dic69 | Dicyclic group; = C69⋊1C4 | 276 | 2- | Dic69 | 276,3 |
Dic3×C23 | Direct product of C23 and Dic3 | 276 | 2 | Dic3xC23 | 276,1 |
C3×Dic23 | Direct product of C3 and Dic23 | 276 | 2 | C3xDic23 | 276,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C277 | Cyclic group | 277 | 1 | C277 | 277,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C278 | Cyclic group | 278 | 1 | C278 | 278,2 |
D139 | Dihedral group | 139 | 2+ | D139 | 278,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C279 | Cyclic group | 279 | 1 | C279 | 279,2 |
C31⋊C9 | The semidirect product of C31 and C9 acting via C9/C3=C3 | 279 | 3 | C31:C9 | 279,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C280 | Cyclic group | 280 | 1 | C280 | 280,4 |
C35⋊3C8 | 1st semidirect product of C35 and C8 acting via C8/C4=C2 | 280 | 2 | C35:3C8 | 280,3 |
C35⋊C8 | 1st semidirect product of C35 and C8 acting via C8/C2=C4 | 280 | 4 | C35:C8 | 280,6 |
C5×C7⋊C8 | Direct product of C5 and C7⋊C8 | 280 | 2 | C5xC7:C8 | 280,2 |
C7×C5⋊C8 | Direct product of C7 and C5⋊C8 | 280 | 4 | C7xC5:C8 | 280,5 |
C7×C5⋊2C8 | Direct product of C7 and C5⋊2C8 | 280 | 2 | C7xC5:2C8 | 280,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C281 | Cyclic group | 281 | 1 | C281 | 281,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C282 | Cyclic group | 282 | 1 | C282 | 282,4 |
D141 | Dihedral group | 141 | 2+ | D141 | 282,3 |
S3×C47 | Direct product of C47 and S3 | 141 | 2 | S3xC47 | 282,1 |
C3×D47 | Direct product of C3 and D47 | 141 | 2 | C3xD47 | 282,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C283 | Cyclic group | 283 | 1 | C283 | 283,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C284 | Cyclic group | 284 | 1 | C284 | 284,2 |
Dic71 | Dicyclic group; = C71⋊C4 | 284 | 2- | Dic71 | 284,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C285 | Cyclic group | 285 | 1 | C285 | 285,2 |
C5×C19⋊C3 | Direct product of C5 and C19⋊C3 | 95 | 3 | C5xC19:C3 | 285,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C286 | Cyclic group | 286 | 1 | C286 | 286,4 |
D143 | Dihedral group | 143 | 2+ | D143 | 286,3 |
C13×D11 | Direct product of C13 and D11 | 143 | 2 | C13xD11 | 286,1 |
C11×D13 | Direct product of C11 and D13 | 143 | 2 | C11xD13 | 286,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C287 | Cyclic group | 287 | 1 | C287 | 287,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C288 | Cyclic group | 288 | 1 | C288 | 288,2 |
C9⋊C32 | The semidirect product of C9 and C32 acting via C32/C16=C2 | 288 | 2 | C9:C32 | 288,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C289 | Cyclic group | 289 | 1 | C289 | 289,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C290 | Cyclic group | 290 | 1 | C290 | 290,4 |
D145 | Dihedral group | 145 | 2+ | D145 | 290,3 |
D5×C29 | Direct product of C29 and D5 | 145 | 2 | D5xC29 | 290,1 |
C5×D29 | Direct product of C5 and D29 | 145 | 2 | C5xD29 | 290,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C291 | Cyclic group | 291 | 1 | C291 | 291,2 |
C97⋊C3 | The semidirect product of C97 and C3 acting faithfully | 97 | 3 | C97:C3 | 291,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C292 | Cyclic group | 292 | 1 | C292 | 292,2 |
Dic73 | Dicyclic group; = C73⋊2C4 | 292 | 2- | Dic73 | 292,1 |
C73⋊C4 | The semidirect product of C73 and C4 acting faithfully | 73 | 4+ | C73:C4 | 292,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C293 | Cyclic group | 293 | 1 | C293 | 293,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C294 | Cyclic group | 294 | 1 | C294 | 294,6 |
D147 | Dihedral group | 147 | 2+ | D147 | 294,5 |
C49⋊C6 | The semidirect product of C49 and C6 acting faithfully | 49 | 6+ | C49:C6 | 294,1 |
S3×C49 | Direct product of C49 and S3 | 147 | 2 | S3xC49 | 294,3 |
C3×D49 | Direct product of C3 and D49 | 147 | 2 | C3xD49 | 294,4 |
C2×C49⋊C3 | Direct product of C2 and C49⋊C3 | 98 | 3 | C2xC49:C3 | 294,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C295 | Cyclic group | 295 | 1 | C295 | 295,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C296 | Cyclic group | 296 | 1 | C296 | 296,2 |
C37⋊C8 | The semidirect product of C37 and C8 acting via C8/C2=C4 | 296 | 4- | C37:C8 | 296,3 |
C37⋊2C8 | The semidirect product of C37 and C8 acting via C8/C4=C2 | 296 | 2 | C37:2C8 | 296,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C297 | Cyclic group | 297 | 1 | C297 | 297,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C298 | Cyclic group | 298 | 1 | C298 | 298,2 |
D149 | Dihedral group | 149 | 2+ | D149 | 298,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C299 | Cyclic group | 299 | 1 | C299 | 299,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C300 | Cyclic group | 300 | 1 | C300 | 300,4 |
Dic75 | Dicyclic group; = C75⋊3C4 | 300 | 2- | Dic75 | 300,3 |
C75⋊C4 | 1st semidirect product of C75 and C4 acting faithfully | 75 | 4 | C75:C4 | 300,6 |
Dic3×C25 | Direct product of C25 and Dic3 | 300 | 2 | Dic3xC25 | 300,1 |
C3×Dic25 | Direct product of C3 and Dic25 | 300 | 2 | C3xDic25 | 300,2 |
C3×C25⋊C4 | Direct product of C3 and C25⋊C4 | 75 | 4 | C3xC25:C4 | 300,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C301 | Cyclic group | 301 | 1 | C301 | 301,2 |
C43⋊C7 | The semidirect product of C43 and C7 acting faithfully | 43 | 7 | C43:C7 | 301,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C302 | Cyclic group | 302 | 1 | C302 | 302,2 |
D151 | Dihedral group | 151 | 2+ | D151 | 302,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C303 | Cyclic group | 303 | 1 | C303 | 303,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C304 | Cyclic group | 304 | 1 | C304 | 304,2 |
C19⋊C16 | The semidirect product of C19 and C16 acting via C16/C8=C2 | 304 | 2 | C19:C16 | 304,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C305 | Cyclic group | 305 | 1 | C305 | 305,2 |
C61⋊C5 | The semidirect product of C61 and C5 acting faithfully | 61 | 5 | C61:C5 | 305,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C306 | Cyclic group | 306 | 1 | C306 | 306,4 |
D153 | Dihedral group | 153 | 2+ | D153 | 306,3 |
C17×D9 | Direct product of C17 and D9 | 153 | 2 | C17xD9 | 306,1 |
C9×D17 | Direct product of C9 and D17 | 153 | 2 | C9xD17 | 306,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C307 | Cyclic group | 307 | 1 | C307 | 307,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C308 | Cyclic group | 308 | 1 | C308 | 308,4 |
Dic77 | Dicyclic group; = C77⋊1C4 | 308 | 2- | Dic77 | 308,3 |
C11×Dic7 | Direct product of C11 and Dic7 | 308 | 2 | C11xDic7 | 308,1 |
C7×Dic11 | Direct product of C7 and Dic11 | 308 | 2 | C7xDic11 | 308,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C309 | Cyclic group | 309 | 1 | C309 | 309,2 |
C103⋊C3 | The semidirect product of C103 and C3 acting faithfully | 103 | 3 | C103:C3 | 309,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C310 | Cyclic group | 310 | 1 | C310 | 310,6 |
D155 | Dihedral group | 155 | 2+ | D155 | 310,5 |
C31⋊C10 | The semidirect product of C31 and C10 acting faithfully | 31 | 10+ | C31:C10 | 310,1 |
D5×C31 | Direct product of C31 and D5 | 155 | 2 | D5xC31 | 310,3 |
C5×D31 | Direct product of C5 and D31 | 155 | 2 | C5xD31 | 310,4 |
C2×C31⋊C5 | Direct product of C2 and C31⋊C5 | 62 | 5 | C2xC31:C5 | 310,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C311 | Cyclic group | 311 | 1 | C311 | 311,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C312 | Cyclic group | 312 | 1 | C312 | 312,6 |
C13⋊C24 | The semidirect product of C13 and C24 acting via C24/C2=C12 | 104 | 12- | C13:C24 | 312,7 |
C13⋊2C24 | The semidirect product of C13 and C24 acting via C24/C4=C6 | 104 | 6 | C13:2C24 | 312,1 |
C39⋊3C8 | 1st semidirect product of C39 and C8 acting via C8/C4=C2 | 312 | 2 | C39:3C8 | 312,5 |
C39⋊C8 | 1st semidirect product of C39 and C8 acting via C8/C2=C4 | 312 | 4 | C39:C8 | 312,14 |
C8×C13⋊C3 | Direct product of C8 and C13⋊C3 | 104 | 3 | C8xC13:C3 | 312,2 |
C13×C3⋊C8 | Direct product of C13 and C3⋊C8 | 312 | 2 | C13xC3:C8 | 312,3 |
C3×C13⋊C8 | Direct product of C3 and C13⋊C8 | 312 | 4 | C3xC13:C8 | 312,13 |
C3×C13⋊2C8 | Direct product of C3 and C13⋊2C8 | 312 | 2 | C3xC13:2C8 | 312,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C313 | Cyclic group | 313 | 1 | C313 | 313,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C314 | Cyclic group | 314 | 1 | C314 | 314,2 |
D157 | Dihedral group | 157 | 2+ | D157 | 314,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C315 | Cyclic group | 315 | 1 | C315 | 315,2 |
C5×C7⋊C9 | Direct product of C5 and C7⋊C9 | 315 | 3 | C5xC7:C9 | 315,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C316 | Cyclic group | 316 | 1 | C316 | 316,2 |
Dic79 | Dicyclic group; = C79⋊C4 | 316 | 2- | Dic79 | 316,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C317 | Cyclic group | 317 | 1 | C317 | 317,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C318 | Cyclic group | 318 | 1 | C318 | 318,4 |
D159 | Dihedral group | 159 | 2+ | D159 | 318,3 |
S3×C53 | Direct product of C53 and S3 | 159 | 2 | S3xC53 | 318,1 |
C3×D53 | Direct product of C3 and D53 | 159 | 2 | C3xD53 | 318,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C319 | Cyclic group | 319 | 1 | C319 | 319,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C320 | Cyclic group | 320 | 1 | C320 | 320,2 |
C5⋊C64 | The semidirect product of C5 and C64 acting via C64/C16=C4 | 320 | 4 | C5:C64 | 320,3 |
C5⋊2C64 | The semidirect product of C5 and C64 acting via C64/C32=C2 | 320 | 2 | C5:2C64 | 320,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C321 | Cyclic group | 321 | 1 | C321 | 321,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C322 | Cyclic group | 322 | 1 | C322 | 322,4 |
D161 | Dihedral group | 161 | 2+ | D161 | 322,3 |
D7×C23 | Direct product of C23 and D7 | 161 | 2 | D7xC23 | 322,1 |
C7×D23 | Direct product of C7 and D23 | 161 | 2 | C7xD23 | 322,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C323 | Cyclic group | 323 | 1 | C323 | 323,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C324 | Cyclic group | 324 | 1 | C324 | 324,2 |
Dic81 | Dicyclic group; = C81⋊C4 | 324 | 2- | Dic81 | 324,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C325 | Cyclic group | 325 | 1 | C325 | 325,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C326 | Cyclic group | 326 | 1 | C326 | 326,2 |
D163 | Dihedral group | 163 | 2+ | D163 | 326,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C327 | Cyclic group | 327 | 1 | C327 | 327,2 |
C109⋊C3 | The semidirect product of C109 and C3 acting faithfully | 109 | 3 | C109:C3 | 327,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C328 | Cyclic group | 328 | 1 | C328 | 328,2 |
C41⋊C8 | The semidirect product of C41 and C8 acting faithfully | 41 | 8+ | C41:C8 | 328,12 |
C41⋊3C8 | The semidirect product of C41 and C8 acting via C8/C4=C2 | 328 | 2 | C41:3C8 | 328,1 |
C41⋊2C8 | The semidirect product of C41 and C8 acting via C8/C2=C4 | 328 | 4- | C41:2C8 | 328,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C329 | Cyclic group | 329 | 1 | C329 | 329,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C330 | Cyclic group | 330 | 1 | C330 | 330,12 |
D165 | Dihedral group | 165 | 2+ | D165 | 330,11 |
C3⋊F11 | The semidirect product of C3 and F11 acting via F11/C11⋊C5=C2 | 33 | 10+ | C3:F11 | 330,3 |
C3×F11 | Direct product of C3 and F11 | 33 | 10 | C3xF11 | 330,1 |
S3×C55 | Direct product of C55 and S3 | 165 | 2 | S3xC55 | 330,8 |
D5×C33 | Direct product of C33 and D5 | 165 | 2 | D5xC33 | 330,6 |
C3×D55 | Direct product of C3 and D55 | 165 | 2 | C3xD55 | 330,7 |
C5×D33 | Direct product of C5 and D33 | 165 | 2 | C5xD33 | 330,9 |
C15×D11 | Direct product of C15 and D11 | 165 | 2 | C15xD11 | 330,5 |
C11×D15 | Direct product of C11 and D15 | 165 | 2 | C11xD15 | 330,10 |
S3×C11⋊C5 | Direct product of S3 and C11⋊C5 | 33 | 10 | S3xC11:C5 | 330,2 |
C6×C11⋊C5 | Direct product of C6 and C11⋊C5 | 66 | 5 | C6xC11:C5 | 330,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C331 | Cyclic group | 331 | 1 | C331 | 331,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C332 | Cyclic group | 332 | 1 | C332 | 332,2 |
Dic83 | Dicyclic group; = C83⋊C4 | 332 | 2- | Dic83 | 332,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C333 | Cyclic group | 333 | 1 | C333 | 333,2 |
C37⋊C9 | The semidirect product of C37 and C9 acting faithfully | 37 | 9 | C37:C9 | 333,3 |
C37⋊2C9 | The semidirect product of C37 and C9 acting via C9/C3=C3 | 333 | 3 | C37:2C9 | 333,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C334 | Cyclic group | 334 | 1 | C334 | 334,2 |
D167 | Dihedral group | 167 | 2+ | D167 | 334,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C335 | Cyclic group | 335 | 1 | C335 | 335,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C336 | Cyclic group | 336 | 1 | C336 | 336,6 |
C7⋊C48 | The semidirect product of C7 and C48 acting via C48/C8=C6 | 112 | 6 | C7:C48 | 336,1 |
C21⋊C16 | 1st semidirect product of C21 and C16 acting via C16/C8=C2 | 336 | 2 | C21:C16 | 336,5 |
C16×C7⋊C3 | Direct product of C16 and C7⋊C3 | 112 | 3 | C16xC7:C3 | 336,2 |
C7×C3⋊C16 | Direct product of C7 and C3⋊C16 | 336 | 2 | C7xC3:C16 | 336,3 |
C3×C7⋊C16 | Direct product of C3 and C7⋊C16 | 336 | 2 | C3xC7:C16 | 336,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C337 | Cyclic group | 337 | 1 | C337 | 337,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C338 | Cyclic group | 338 | 1 | C338 | 338,2 |
D169 | Dihedral group | 169 | 2+ | D169 | 338,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C339 | Cyclic group | 339 | 1 | C339 | 339,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C340 | Cyclic group | 340 | 1 | C340 | 340,4 |
Dic85 | Dicyclic group; = C85⋊7C4 | 340 | 2- | Dic85 | 340,3 |
C85⋊C4 | 3rd semidirect product of C85 and C4 acting faithfully | 85 | 4 | C85:C4 | 340,6 |
C85⋊2C4 | 2nd semidirect product of C85 and C4 acting faithfully | 85 | 4+ | C85:2C4 | 340,10 |
C17⋊3F5 | The semidirect product of C17 and F5 acting via F5/D5=C2 | 85 | 4 | C17:3F5 | 340,8 |
C17⋊F5 | 1st semidirect product of C17 and F5 acting via F5/C5=C4 | 85 | 4+ | C17:F5 | 340,9 |
C17×F5 | Direct product of C17 and F5 | 85 | 4 | C17xF5 | 340,7 |
C17×Dic5 | Direct product of C17 and Dic5 | 340 | 2 | C17xDic5 | 340,1 |
C5×Dic17 | Direct product of C5 and Dic17 | 340 | 2 | C5xDic17 | 340,2 |
C5×C17⋊C4 | Direct product of C5 and C17⋊C4 | 85 | 4 | C5xC17:C4 | 340,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C341 | Cyclic group | 341 | 1 | C341 | 341,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C342 | Cyclic group | 342 | 1 | C342 | 342,6 |
D171 | Dihedral group | 171 | 2+ | D171 | 342,5 |
F19 | Frobenius group; = C19⋊C18 = AGL1(𝔽19) = Aut(D19) = Hol(C19) | 19 | 18+ | F19 | 342,7 |
C57.C6 | The non-split extension by C57 of C6 acting faithfully | 171 | 6 | C57.C6 | 342,1 |
D9×C19 | Direct product of C19 and D9 | 171 | 2 | D9xC19 | 342,3 |
C9×D19 | Direct product of C9 and D19 | 171 | 2 | C9xD19 | 342,4 |
C2×C19⋊C9 | Direct product of C2 and C19⋊C9 | 38 | 9 | C2xC19:C9 | 342,8 |
C2×C19⋊2C9 | Direct product of C2 and C19⋊2C9 | 342 | 3 | C2xC19:2C9 | 342,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C343 | Cyclic group | 343 | 1 | C343 | 343,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C344 | Cyclic group | 344 | 1 | C344 | 344,2 |
C43⋊C8 | The semidirect product of C43 and C8 acting via C8/C4=C2 | 344 | 2 | C43:C8 | 344,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C345 | Cyclic group | 345 | 1 | C345 | 345,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C346 | Cyclic group | 346 | 1 | C346 | 346,2 |
D173 | Dihedral group | 173 | 2+ | D173 | 346,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C347 | Cyclic group | 347 | 1 | C347 | 347,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C348 | Cyclic group | 348 | 1 | C348 | 348,4 |
Dic87 | Dicyclic group; = C87⋊3C4 | 348 | 2- | Dic87 | 348,3 |
C87⋊C4 | 1st semidirect product of C87 and C4 acting faithfully | 87 | 4 | C87:C4 | 348,6 |
Dic3×C29 | Direct product of C29 and Dic3 | 348 | 2 | Dic3xC29 | 348,1 |
C3×Dic29 | Direct product of C3 and Dic29 | 348 | 2 | C3xDic29 | 348,2 |
C3×C29⋊C4 | Direct product of C3 and C29⋊C4 | 87 | 4 | C3xC29:C4 | 348,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C349 | Cyclic group | 349 | 1 | C349 | 349,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C350 | Cyclic group | 350 | 1 | C350 | 350,4 |
D175 | Dihedral group | 175 | 2+ | D175 | 350,3 |
C7×D25 | Direct product of C7 and D25 | 175 | 2 | C7xD25 | 350,1 |
D7×C25 | Direct product of C25 and D7 | 175 | 2 | D7xC25 | 350,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C351 | Cyclic group | 351 | 1 | C351 | 351,2 |
C13⋊C27 | The semidirect product of C13 and C27 acting via C27/C9=C3 | 351 | 3 | C13:C27 | 351,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C352 | Cyclic group | 352 | 1 | C352 | 352,2 |
C11⋊C32 | The semidirect product of C11 and C32 acting via C32/C16=C2 | 352 | 2 | C11:C32 | 352,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C353 | Cyclic group | 353 | 1 | C353 | 353,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C354 | Cyclic group | 354 | 1 | C354 | 354,4 |
D177 | Dihedral group | 177 | 2+ | D177 | 354,3 |
S3×C59 | Direct product of C59 and S3 | 177 | 2 | S3xC59 | 354,1 |
C3×D59 | Direct product of C3 and D59 | 177 | 2 | C3xD59 | 354,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C355 | Cyclic group | 355 | 1 | C355 | 355,2 |
C71⋊C5 | The semidirect product of C71 and C5 acting faithfully | 71 | 5 | C71:C5 | 355,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C356 | Cyclic group | 356 | 1 | C356 | 356,2 |
Dic89 | Dicyclic group; = C89⋊2C4 | 356 | 2- | Dic89 | 356,1 |
C89⋊C4 | The semidirect product of C89 and C4 acting faithfully | 89 | 4+ | C89:C4 | 356,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C357 | Cyclic group | 357 | 1 | C357 | 357,2 |
C17×C7⋊C3 | Direct product of C17 and C7⋊C3 | 119 | 3 | C17xC7:C3 | 357,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C358 | Cyclic group | 358 | 1 | C358 | 358,2 |
D179 | Dihedral group | 179 | 2+ | D179 | 358,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C359 | Cyclic group | 359 | 1 | C359 | 359,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C360 | Cyclic group | 360 | 1 | C360 | 360,4 |
C45⋊3C8 | 1st semidirect product of C45 and C8 acting via C8/C4=C2 | 360 | 2 | C45:3C8 | 360,3 |
C45⋊C8 | 1st semidirect product of C45 and C8 acting via C8/C2=C4 | 360 | 4 | C45:C8 | 360,6 |
C5×C9⋊C8 | Direct product of C5 and C9⋊C8 | 360 | 2 | C5xC9:C8 | 360,1 |
C9×C5⋊C8 | Direct product of C9 and C5⋊C8 | 360 | 4 | C9xC5:C8 | 360,5 |
C9×C5⋊2C8 | Direct product of C9 and C5⋊2C8 | 360 | 2 | C9xC5:2C8 | 360,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C361 | Cyclic group | 361 | 1 | C361 | 361,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C362 | Cyclic group | 362 | 1 | C362 | 362,2 |
D181 | Dihedral group | 181 | 2+ | D181 | 362,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C363 | Cyclic group | 363 | 1 | C363 | 363,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C364 | Cyclic group | 364 | 1 | C364 | 364,4 |
Dic91 | Dicyclic group; = C91⋊3C4 | 364 | 2- | Dic91 | 364,3 |
C91⋊C4 | 1st semidirect product of C91 and C4 acting faithfully | 91 | 4 | C91:C4 | 364,6 |
C13×Dic7 | Direct product of C13 and Dic7 | 364 | 2 | C13xDic7 | 364,1 |
C7×Dic13 | Direct product of C7 and Dic13 | 364 | 2 | C7xDic13 | 364,2 |
C7×C13⋊C4 | Direct product of C7 and C13⋊C4 | 91 | 4 | C7xC13:C4 | 364,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C365 | Cyclic group | 365 | 1 | C365 | 365,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C366 | Cyclic group | 366 | 1 | C366 | 366,6 |
D183 | Dihedral group | 183 | 2+ | D183 | 366,5 |
C61⋊C6 | The semidirect product of C61 and C6 acting faithfully | 61 | 6+ | C61:C6 | 366,1 |
S3×C61 | Direct product of C61 and S3 | 183 | 2 | S3xC61 | 366,3 |
C3×D61 | Direct product of C3 and D61 | 183 | 2 | C3xD61 | 366,4 |
C2×C61⋊C3 | Direct product of C2 and C61⋊C3 | 122 | 3 | C2xC61:C3 | 366,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C367 | Cyclic group | 367 | 1 | C367 | 367,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C368 | Cyclic group | 368 | 1 | C368 | 368,2 |
C23⋊C16 | The semidirect product of C23 and C16 acting via C16/C8=C2 | 368 | 2 | C23:C16 | 368,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C369 | Cyclic group | 369 | 1 | C369 | 369,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C370 | Cyclic group | 370 | 1 | C370 | 370,4 |
D185 | Dihedral group | 185 | 2+ | D185 | 370,3 |
D5×C37 | Direct product of C37 and D5 | 185 | 2 | D5xC37 | 370,1 |
C5×D37 | Direct product of C5 and D37 | 185 | 2 | C5xD37 | 370,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C371 | Cyclic group | 371 | 1 | C371 | 371,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C372 | Cyclic group | 372 | 1 | C372 | 372,6 |
Dic93 | Dicyclic group; = C93⋊1C4 | 372 | 2- | Dic93 | 372,5 |
C31⋊C12 | The semidirect product of C31 and C12 acting via C12/C2=C6 | 124 | 6- | C31:C12 | 372,1 |
Dic3×C31 | Direct product of C31 and Dic3 | 372 | 2 | Dic3xC31 | 372,3 |
C3×Dic31 | Direct product of C3 and Dic31 | 372 | 2 | C3xDic31 | 372,4 |
C4×C31⋊C3 | Direct product of C4 and C31⋊C3 | 124 | 3 | C4xC31:C3 | 372,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C373 | Cyclic group | 373 | 1 | C373 | 373,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C374 | Cyclic group | 374 | 1 | C374 | 374,4 |
D187 | Dihedral group | 187 | 2+ | D187 | 374,3 |
C17×D11 | Direct product of C17 and D11 | 187 | 2 | C17xD11 | 374,1 |
C11×D17 | Direct product of C11 and D17 | 187 | 2 | C11xD17 | 374,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C375 | Cyclic group | 375 | 1 | C375 | 375,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C376 | Cyclic group | 376 | 1 | C376 | 376,2 |
C47⋊C8 | The semidirect product of C47 and C8 acting via C8/C4=C2 | 376 | 2 | C47:C8 | 376,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C377 | Cyclic group | 377 | 1 | C377 | 377,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C378 | Cyclic group | 378 | 1 | C378 | 378,6 |
D189 | Dihedral group | 189 | 2+ | D189 | 378,5 |
C7⋊C54 | The semidirect product of C7 and C54 acting via C54/C9=C6 | 189 | 6 | C7:C54 | 378,1 |
C7×D27 | Direct product of C7 and D27 | 189 | 2 | C7xD27 | 378,3 |
D7×C27 | Direct product of C27 and D7 | 189 | 2 | D7xC27 | 378,4 |
C2×C7⋊C27 | Direct product of C2 and C7⋊C27 | 378 | 3 | C2xC7:C27 | 378,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C379 | Cyclic group | 379 | 1 | C379 | 379,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C380 | Cyclic group | 380 | 1 | C380 | 380,4 |
Dic95 | Dicyclic group; = C95⋊3C4 | 380 | 2- | Dic95 | 380,3 |
C19⋊F5 | The semidirect product of C19 and F5 acting via F5/D5=C2 | 95 | 4 | C19:F5 | 380,6 |
C19×F5 | Direct product of C19 and F5 | 95 | 4 | C19xF5 | 380,5 |
C19×Dic5 | Direct product of C19 and Dic5 | 380 | 2 | C19xDic5 | 380,1 |
C5×Dic19 | Direct product of C5 and Dic19 | 380 | 2 | C5xDic19 | 380,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C381 | Cyclic group | 381 | 1 | C381 | 381,2 |
C127⋊C3 | The semidirect product of C127 and C3 acting faithfully | 127 | 3 | C127:C3 | 381,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C382 | Cyclic group | 382 | 1 | C382 | 382,2 |
D191 | Dihedral group | 191 | 2+ | D191 | 382,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C383 | Cyclic group | 383 | 1 | C383 | 383,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C385 | Cyclic group | 385 | 1 | C385 | 385,2 |
C7×C11⋊C5 | Direct product of C7 and C11⋊C5 | 77 | 5 | C7xC11:C5 | 385,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C386 | Cyclic group | 386 | 1 | C386 | 386,2 |
D193 | Dihedral group | 193 | 2+ | D193 | 386,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C387 | Cyclic group | 387 | 1 | C387 | 387,2 |
C43⋊C9 | The semidirect product of C43 and C9 acting via C9/C3=C3 | 387 | 3 | C43:C9 | 387,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C388 | Cyclic group | 388 | 1 | C388 | 388,2 |
Dic97 | Dicyclic group; = C97⋊2C4 | 388 | 2- | Dic97 | 388,1 |
C97⋊C4 | The semidirect product of C97 and C4 acting faithfully | 97 | 4+ | C97:C4 | 388,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C389 | Cyclic group | 389 | 1 | C389 | 389,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C390 | Cyclic group | 390 | 1 | C390 | 390,12 |
D195 | Dihedral group | 195 | 2+ | D195 | 390,11 |
D65⋊C3 | The semidirect product of D65 and C3 acting faithfully | 65 | 6+ | D65:C3 | 390,3 |
S3×C65 | Direct product of C65 and S3 | 195 | 2 | S3xC65 | 390,8 |
D5×C39 | Direct product of C39 and D5 | 195 | 2 | D5xC39 | 390,6 |
C3×D65 | Direct product of C3 and D65 | 195 | 2 | C3xD65 | 390,7 |
C5×D39 | Direct product of C5 and D39 | 195 | 2 | C5xD39 | 390,9 |
C15×D13 | Direct product of C15 and D13 | 195 | 2 | C15xD13 | 390,5 |
C13×D15 | Direct product of C13 and D15 | 195 | 2 | C13xD15 | 390,10 |
C5×C13⋊C6 | Direct product of C5 and C13⋊C6 | 65 | 6 | C5xC13:C6 | 390,1 |
D5×C13⋊C3 | Direct product of D5 and C13⋊C3 | 65 | 6 | D5xC13:C3 | 390,2 |
C10×C13⋊C3 | Direct product of C10 and C13⋊C3 | 130 | 3 | C10xC13:C3 | 390,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C391 | Cyclic group | 391 | 1 | C391 | 391,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C392 | Cyclic group | 392 | 1 | C392 | 392,2 |
C49⋊C8 | The semidirect product of C49 and C8 acting via C8/C4=C2 | 392 | 2 | C49:C8 | 392,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C393 | Cyclic group | 393 | 1 | C393 | 393,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C394 | Cyclic group | 394 | 1 | C394 | 394,2 |
D197 | Dihedral group | 197 | 2+ | D197 | 394,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C395 | Cyclic group | 395 | 1 | C395 | 395,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C396 | Cyclic group | 396 | 1 | C396 | 396,4 |
Dic99 | Dicyclic group; = C99⋊1C4 | 396 | 2- | Dic99 | 396,3 |
C11×Dic9 | Direct product of C11 and Dic9 | 396 | 2 | C11xDic9 | 396,1 |
C9×Dic11 | Direct product of C9 and Dic11 | 396 | 2 | C9xDic11 | 396,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C397 | Cyclic group | 397 | 1 | C397 | 397,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C398 | Cyclic group | 398 | 1 | C398 | 398,2 |
D199 | Dihedral group | 199 | 2+ | D199 | 398,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C399 | Cyclic group | 399 | 1 | C399 | 399,5 |
C133⋊C3 | 3rd semidirect product of C133 and C3 acting faithfully | 133 | 3 | C133:C3 | 399,3 |
C133⋊4C3 | 4th semidirect product of C133 and C3 acting faithfully | 133 | 3 | C133:4C3 | 399,4 |
C19×C7⋊C3 | Direct product of C19 and C7⋊C3 | 133 | 3 | C19xC7:C3 | 399,1 |
C7×C19⋊C3 | Direct product of C7 and C19⋊C3 | 133 | 3 | C7xC19:C3 | 399,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C400 | Cyclic group | 400 | 1 | C400 | 400,2 |
C25⋊C16 | The semidirect product of C25 and C16 acting via C16/C4=C4 | 400 | 4 | C25:C16 | 400,3 |
C25⋊2C16 | The semidirect product of C25 and C16 acting via C16/C8=C2 | 400 | 2 | C25:2C16 | 400,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C401 | Cyclic group | 401 | 1 | C401 | 401,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C402 | Cyclic group | 402 | 1 | C402 | 402,6 |
D201 | Dihedral group | 201 | 2+ | D201 | 402,5 |
C67⋊C6 | The semidirect product of C67 and C6 acting faithfully | 67 | 6+ | C67:C6 | 402,1 |
S3×C67 | Direct product of C67 and S3 | 201 | 2 | S3xC67 | 402,3 |
C3×D67 | Direct product of C3 and D67 | 201 | 2 | C3xD67 | 402,4 |
C2×C67⋊C3 | Direct product of C2 and C67⋊C3 | 134 | 3 | C2xC67:C3 | 402,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C403 | Cyclic group | 403 | 1 | C403 | 403,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C404 | Cyclic group | 404 | 1 | C404 | 404,2 |
Dic101 | Dicyclic group; = C101⋊2C4 | 404 | 2- | Dic101 | 404,1 |
C101⋊C4 | The semidirect product of C101 and C4 acting faithfully | 101 | 4+ | C101:C4 | 404,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C405 | Cyclic group | 405 | 1 | C405 | 405,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C406 | Cyclic group | 406 | 1 | C406 | 406,6 |
D203 | Dihedral group | 203 | 2+ | D203 | 406,5 |
C29⋊C14 | The semidirect product of C29 and C14 acting faithfully | 29 | 14+ | C29:C14 | 406,1 |
D7×C29 | Direct product of C29 and D7 | 203 | 2 | D7xC29 | 406,3 |
C7×D29 | Direct product of C7 and D29 | 203 | 2 | C7xD29 | 406,4 |
C2×C29⋊C7 | Direct product of C2 and C29⋊C7 | 58 | 7 | C2xC29:C7 | 406,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C407 | Cyclic group | 407 | 1 | C407 | 407,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C408 | Cyclic group | 408 | 1 | C408 | 408,4 |
C51⋊C8 | 1st semidirect product of C51 and C8 acting faithfully | 51 | 8 | C51:C8 | 408,34 |
C51⋊5C8 | 1st semidirect product of C51 and C8 acting via C8/C4=C2 | 408 | 2 | C51:5C8 | 408,3 |
C51⋊3C8 | 1st semidirect product of C51 and C8 acting via C8/C2=C4 | 408 | 4 | C51:3C8 | 408,6 |
C3×C17⋊C8 | Direct product of C3 and C17⋊C8 | 51 | 8 | C3xC17:C8 | 408,33 |
C17×C3⋊C8 | Direct product of C17 and C3⋊C8 | 408 | 2 | C17xC3:C8 | 408,1 |
C3×C17⋊3C8 | Direct product of C3 and C17⋊3C8 | 408 | 2 | C3xC17:3C8 | 408,2 |
C3×C17⋊2C8 | Direct product of C3 and C17⋊2C8 | 408 | 4 | C3xC17:2C8 | 408,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C409 | Cyclic group | 409 | 1 | C409 | 409,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C410 | Cyclic group | 410 | 1 | C410 | 410,6 |
D205 | Dihedral group | 205 | 2+ | D205 | 410,5 |
C41⋊C10 | The semidirect product of C41 and C10 acting faithfully | 41 | 10+ | C41:C10 | 410,1 |
D5×C41 | Direct product of C41 and D5 | 205 | 2 | D5xC41 | 410,3 |
C5×D41 | Direct product of C5 and D41 | 205 | 2 | C5xD41 | 410,4 |
C2×C41⋊C5 | Direct product of C2 and C41⋊C5 | 82 | 5 | C2xC41:C5 | 410,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C411 | Cyclic group | 411 | 1 | C411 | 411,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C412 | Cyclic group | 412 | 1 | C412 | 412,2 |
Dic103 | Dicyclic group; = C103⋊C4 | 412 | 2- | Dic103 | 412,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C413 | Cyclic group | 413 | 1 | C413 | 413,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C414 | Cyclic group | 414 | 1 | C414 | 414,4 |
D207 | Dihedral group | 207 | 2+ | D207 | 414,3 |
D9×C23 | Direct product of C23 and D9 | 207 | 2 | D9xC23 | 414,1 |
C9×D23 | Direct product of C9 and D23 | 207 | 2 | C9xD23 | 414,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C415 | Cyclic group | 415 | 1 | C415 | 415,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C416 | Cyclic group | 416 | 1 | C416 | 416,2 |
C13⋊C32 | The semidirect product of C13 and C32 acting via C32/C8=C4 | 416 | 4 | C13:C32 | 416,3 |
C13⋊2C32 | The semidirect product of C13 and C32 acting via C32/C16=C2 | 416 | 2 | C13:2C32 | 416,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C417 | Cyclic group | 417 | 1 | C417 | 417,2 |
C139⋊C3 | The semidirect product of C139 and C3 acting faithfully | 139 | 3 | C139:C3 | 417,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C418 | Cyclic group | 418 | 1 | C418 | 418,4 |
D209 | Dihedral group | 209 | 2+ | D209 | 418,3 |
C19×D11 | Direct product of C19 and D11 | 209 | 2 | C19xD11 | 418,1 |
C11×D19 | Direct product of C11 and D19 | 209 | 2 | C11xD19 | 418,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C419 | Cyclic group | 419 | 1 | C419 | 419,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C421 | Cyclic group | 421 | 1 | C421 | 421,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C422 | Cyclic group | 422 | 1 | C422 | 422,2 |
D211 | Dihedral group | 211 | 2+ | D211 | 422,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C423 | Cyclic group | 423 | 1 | C423 | 423,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C424 | Cyclic group | 424 | 1 | C424 | 424,2 |
C53⋊C8 | The semidirect product of C53 and C8 acting via C8/C2=C4 | 424 | 4- | C53:C8 | 424,3 |
C53⋊2C8 | The semidirect product of C53 and C8 acting via C8/C4=C2 | 424 | 2 | C53:2C8 | 424,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C425 | Cyclic group | 425 | 1 | C425 | 425,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C426 | Cyclic group | 426 | 1 | C426 | 426,4 |
D213 | Dihedral group | 213 | 2+ | D213 | 426,3 |
S3×C71 | Direct product of C71 and S3 | 213 | 2 | S3xC71 | 426,1 |
C3×D71 | Direct product of C3 and D71 | 213 | 2 | C3xD71 | 426,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C427 | Cyclic group | 427 | 1 | C427 | 427,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C428 | Cyclic group | 428 | 1 | C428 | 428,2 |
Dic107 | Dicyclic group; = C107⋊C4 | 428 | 2- | Dic107 | 428,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C429 | Cyclic group | 429 | 1 | C429 | 429,2 |
C11×C13⋊C3 | Direct product of C11 and C13⋊C3 | 143 | 3 | C11xC13:C3 | 429,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C430 | Cyclic group | 430 | 1 | C430 | 430,4 |
D215 | Dihedral group | 215 | 2+ | D215 | 430,3 |
D5×C43 | Direct product of C43 and D5 | 215 | 2 | D5xC43 | 430,1 |
C5×D43 | Direct product of C5 and D43 | 215 | 2 | C5xD43 | 430,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C431 | Cyclic group | 431 | 1 | C431 | 431,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C432 | Cyclic group | 432 | 1 | C432 | 432,2 |
C27⋊C16 | The semidirect product of C27 and C16 acting via C16/C8=C2 | 432 | 2 | C27:C16 | 432,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C433 | Cyclic group | 433 | 1 | C433 | 433,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C434 | Cyclic group | 434 | 1 | C434 | 434,4 |
D217 | Dihedral group | 217 | 2+ | D217 | 434,3 |
D7×C31 | Direct product of C31 and D7 | 217 | 2 | D7xC31 | 434,1 |
C7×D31 | Direct product of C7 and D31 | 217 | 2 | C7xD31 | 434,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C435 | Cyclic group | 435 | 1 | C435 | 435,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C436 | Cyclic group | 436 | 1 | C436 | 436,2 |
Dic109 | Dicyclic group; = C109⋊2C4 | 436 | 2- | Dic109 | 436,1 |
C109⋊C4 | The semidirect product of C109 and C4 acting faithfully | 109 | 4+ | C109:C4 | 436,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C437 | Cyclic group | 437 | 1 | C437 | 437,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C438 | Cyclic group | 438 | 1 | C438 | 438,6 |
D219 | Dihedral group | 219 | 2+ | D219 | 438,5 |
C73⋊C6 | The semidirect product of C73 and C6 acting faithfully | 73 | 6+ | C73:C6 | 438,1 |
S3×C73 | Direct product of C73 and S3 | 219 | 2 | S3xC73 | 438,3 |
C3×D73 | Direct product of C3 and D73 | 219 | 2 | C3xD73 | 438,4 |
C2×C73⋊C3 | Direct product of C2 and C73⋊C3 | 146 | 3 | C2xC73:C3 | 438,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C439 | Cyclic group | 439 | 1 | C439 | 439,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C440 | Cyclic group | 440 | 1 | C440 | 440,6 |
C11⋊C40 | The semidirect product of C11 and C40 acting via C40/C4=C10 | 88 | 10 | C11:C40 | 440,1 |
C55⋊3C8 | 1st semidirect product of C55 and C8 acting via C8/C4=C2 | 440 | 2 | C55:3C8 | 440,5 |
C55⋊C8 | 1st semidirect product of C55 and C8 acting via C8/C2=C4 | 440 | 4 | C55:C8 | 440,16 |
C8×C11⋊C5 | Direct product of C8 and C11⋊C5 | 88 | 5 | C8xC11:C5 | 440,2 |
C5×C11⋊C8 | Direct product of C5 and C11⋊C8 | 440 | 2 | C5xC11:C8 | 440,4 |
C11×C5⋊C8 | Direct product of C11 and C5⋊C8 | 440 | 4 | C11xC5:C8 | 440,15 |
C11×C5⋊2C8 | Direct product of C11 and C5⋊2C8 | 440 | 2 | C11xC5:2C8 | 440,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C441 | Cyclic group | 441 | 1 | C441 | 441,2 |
C49⋊C9 | The semidirect product of C49 and C9 acting via C9/C3=C3 | 441 | 3 | C49:C9 | 441,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C442 | Cyclic group | 442 | 1 | C442 | 442,4 |
D221 | Dihedral group | 221 | 2+ | D221 | 442,3 |
C17×D13 | Direct product of C17 and D13 | 221 | 2 | C17xD13 | 442,1 |
C13×D17 | Direct product of C13 and D17 | 221 | 2 | C13xD17 | 442,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C443 | Cyclic group | 443 | 1 | C443 | 443,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C444 | Cyclic group | 444 | 1 | C444 | 444,6 |
Dic111 | Dicyclic group; = C3⋊Dic37 | 444 | 2- | Dic111 | 444,5 |
C37⋊C12 | The semidirect product of C37 and C12 acting faithfully | 37 | 12+ | C37:C12 | 444,7 |
C37⋊Dic3 | The semidirect product of C37 and Dic3 acting via Dic3/C3=C4 | 111 | 4 | C37:Dic3 | 444,10 |
C74.C6 | The non-split extension by C74 of C6 acting faithfully | 148 | 6- | C74.C6 | 444,1 |
Dic3×C37 | Direct product of C37 and Dic3 | 444 | 2 | Dic3xC37 | 444,3 |
C3×Dic37 | Direct product of C3 and Dic37 | 444 | 2 | C3xDic37 | 444,4 |
C3×C37⋊C4 | Direct product of C3 and C37⋊C4 | 111 | 4 | C3xC37:C4 | 444,9 |
C4×C37⋊C3 | Direct product of C4 and C37⋊C3 | 148 | 3 | C4xC37:C3 | 444,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C445 | Cyclic group | 445 | 1 | C445 | 445,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C446 | Cyclic group | 446 | 1 | C446 | 446,2 |
D223 | Dihedral group | 223 | 2+ | D223 | 446,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C447 | Cyclic group | 447 | 1 | C447 | 447,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C448 | Cyclic group | 448 | 1 | C448 | 448,2 |
C7⋊C64 | The semidirect product of C7 and C64 acting via C64/C32=C2 | 448 | 2 | C7:C64 | 448,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C449 | Cyclic group | 449 | 1 | C449 | 449,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C450 | Cyclic group | 450 | 1 | C450 | 450,4 |
D225 | Dihedral group | 225 | 2+ | D225 | 450,3 |
D9×C25 | Direct product of C25 and D9 | 225 | 2 | D9xC25 | 450,1 |
C9×D25 | Direct product of C9 and D25 | 225 | 2 | C9xD25 | 450,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C451 | Cyclic group | 451 | 1 | C451 | 451,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C452 | Cyclic group | 452 | 1 | C452 | 452,2 |
Dic113 | Dicyclic group; = C113⋊2C4 | 452 | 2- | Dic113 | 452,1 |
C113⋊C4 | The semidirect product of C113 and C4 acting faithfully | 113 | 4+ | C113:C4 | 452,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C453 | Cyclic group | 453 | 1 | C453 | 453,2 |
C151⋊C3 | The semidirect product of C151 and C3 acting faithfully | 151 | 3 | C151:C3 | 453,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C454 | Cyclic group | 454 | 1 | C454 | 454,2 |
D227 | Dihedral group | 227 | 2+ | D227 | 454,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C455 | Cyclic group | 455 | 1 | C455 | 455,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C456 | Cyclic group | 456 | 1 | C456 | 456,6 |
C19⋊C24 | The semidirect product of C19 and C24 acting via C24/C4=C6 | 152 | 6 | C19:C24 | 456,1 |
C57⋊C8 | 1st semidirect product of C57 and C8 acting via C8/C4=C2 | 456 | 2 | C57:C8 | 456,5 |
C8×C19⋊C3 | Direct product of C8 and C19⋊C3 | 152 | 3 | C8xC19:C3 | 456,2 |
C19×C3⋊C8 | Direct product of C19 and C3⋊C8 | 456 | 2 | C19xC3:C8 | 456,3 |
C3×C19⋊C8 | Direct product of C3 and C19⋊C8 | 456 | 2 | C3xC19:C8 | 456,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C457 | Cyclic group | 457 | 1 | C457 | 457,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C458 | Cyclic group | 458 | 1 | C458 | 458,2 |
D229 | Dihedral group | 229 | 2+ | D229 | 458,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C459 | Cyclic group | 459 | 1 | C459 | 459,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C460 | Cyclic group | 460 | 1 | C460 | 460,4 |
Dic115 | Dicyclic group; = C23⋊Dic5 | 460 | 2- | Dic115 | 460,3 |
C23⋊F5 | The semidirect product of C23 and F5 acting via F5/D5=C2 | 115 | 4 | C23:F5 | 460,6 |
F5×C23 | Direct product of C23 and F5 | 115 | 4 | F5xC23 | 460,5 |
Dic5×C23 | Direct product of C23 and Dic5 | 460 | 2 | Dic5xC23 | 460,1 |
C5×Dic23 | Direct product of C5 and Dic23 | 460 | 2 | C5xDic23 | 460,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C461 | Cyclic group | 461 | 1 | C461 | 461,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C462 | Cyclic group | 462 | 1 | C462 | 462,12 |
D231 | Dihedral group | 231 | 2+ | D231 | 462,11 |
C11⋊F7 | The semidirect product of C11 and F7 acting via F7/C7⋊C3=C2 | 77 | 6+ | C11:F7 | 462,3 |
C11×F7 | Direct product of C11 and F7 | 77 | 6 | C11xF7 | 462,2 |
S3×C77 | Direct product of C77 and S3 | 231 | 2 | S3xC77 | 462,8 |
D7×C33 | Direct product of C33 and D7 | 231 | 2 | D7xC33 | 462,6 |
C3×D77 | Direct product of C3 and D77 | 231 | 2 | C3xD77 | 462,7 |
C7×D33 | Direct product of C7 and D33 | 231 | 2 | C7xD33 | 462,9 |
C21×D11 | Direct product of C21 and D11 | 231 | 2 | C21xD11 | 462,5 |
C11×D21 | Direct product of C11 and D21 | 231 | 2 | C11xD21 | 462,10 |
C7⋊C3×D11 | Direct product of C7⋊C3 and D11 | 77 | 6 | C7:C3xD11 | 462,1 |
C7⋊C3×C22 | Direct product of C22 and C7⋊C3 | 154 | 3 | C7:C3xC22 | 462,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C463 | Cyclic group | 463 | 1 | C463 | 463,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C464 | Cyclic group | 464 | 1 | C464 | 464,2 |
C29⋊C16 | The semidirect product of C29 and C16 acting via C16/C4=C4 | 464 | 4 | C29:C16 | 464,3 |
C29⋊2C16 | The semidirect product of C29 and C16 acting via C16/C8=C2 | 464 | 2 | C29:2C16 | 464,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C465 | Cyclic group | 465 | 1 | C465 | 465,4 |
C31⋊C15 | The semidirect product of C31 and C15 acting faithfully | 31 | 15 | C31:C15 | 465,1 |
C3×C31⋊C5 | Direct product of C3 and C31⋊C5 | 93 | 5 | C3xC31:C5 | 465,2 |
C5×C31⋊C3 | Direct product of C5 and C31⋊C3 | 155 | 3 | C5xC31:C3 | 465,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C466 | Cyclic group | 466 | 1 | C466 | 466,2 |
D233 | Dihedral group | 233 | 2+ | D233 | 466,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C467 | Cyclic group | 467 | 1 | C467 | 467,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C468 | Cyclic group | 468 | 1 | C468 | 468,6 |
Dic117 | Dicyclic group; = C9⋊Dic13 | 468 | 2- | Dic117 | 468,5 |
C13⋊C36 | The semidirect product of C13 and C36 acting via C36/C3=C12 | 117 | 12 | C13:C36 | 468,7 |
C13⋊Dic9 | The semidirect product of C13 and Dic9 acting via Dic9/C9=C4 | 117 | 4 | C13:Dic9 | 468,10 |
C13⋊2C36 | The semidirect product of C13 and C36 acting via C36/C6=C6 | 468 | 6 | C13:2C36 | 468,1 |
C13×Dic9 | Direct product of C13 and Dic9 | 468 | 2 | C13xDic9 | 468,3 |
C9×Dic13 | Direct product of C9 and Dic13 | 468 | 2 | C9xDic13 | 468,4 |
C9×C13⋊C4 | Direct product of C9 and C13⋊C4 | 117 | 4 | C9xC13:C4 | 468,9 |
C4×C13⋊C9 | Direct product of C4 and C13⋊C9 | 468 | 3 | C4xC13:C9 | 468,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C469 | Cyclic group | 469 | 1 | C469 | 469,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C470 | Cyclic group | 470 | 1 | C470 | 470,4 |
D235 | Dihedral group | 235 | 2+ | D235 | 470,3 |
D5×C47 | Direct product of C47 and D5 | 235 | 2 | D5xC47 | 470,1 |
C5×D47 | Direct product of C5 and D47 | 235 | 2 | C5xD47 | 470,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C471 | Cyclic group | 471 | 1 | C471 | 471,2 |
C157⋊C3 | The semidirect product of C157 and C3 acting faithfully | 157 | 3 | C157:C3 | 471,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C472 | Cyclic group | 472 | 1 | C472 | 472,2 |
C59⋊C8 | The semidirect product of C59 and C8 acting via C8/C4=C2 | 472 | 2 | C59:C8 | 472,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C473 | Cyclic group | 473 | 1 | C473 | 473,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C474 | Cyclic group | 474 | 1 | C474 | 474,6 |
D237 | Dihedral group | 237 | 2+ | D237 | 474,5 |
C79⋊C6 | The semidirect product of C79 and C6 acting faithfully | 79 | 6+ | C79:C6 | 474,1 |
S3×C79 | Direct product of C79 and S3 | 237 | 2 | S3xC79 | 474,3 |
C3×D79 | Direct product of C3 and D79 | 237 | 2 | C3xD79 | 474,4 |
C2×C79⋊C3 | Direct product of C2 and C79⋊C3 | 158 | 3 | C2xC79:C3 | 474,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C475 | Cyclic group | 475 | 1 | C475 | 475,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C476 | Cyclic group | 476 | 1 | C476 | 476,4 |
Dic119 | Dicyclic group; = C7⋊Dic17 | 476 | 2- | Dic119 | 476,3 |
C17⋊Dic7 | The semidirect product of C17 and Dic7 acting via Dic7/C7=C4 | 119 | 4 | C17:Dic7 | 476,6 |
C17×Dic7 | Direct product of C17 and Dic7 | 476 | 2 | C17xDic7 | 476,1 |
C7×Dic17 | Direct product of C7 and Dic17 | 476 | 2 | C7xDic17 | 476,2 |
C7×C17⋊C4 | Direct product of C7 and C17⋊C4 | 119 | 4 | C7xC17:C4 | 476,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C477 | Cyclic group | 477 | 1 | C477 | 477,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C478 | Cyclic group | 478 | 1 | C478 | 478,2 |
D239 | Dihedral group | 239 | 2+ | D239 | 478,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C479 | Cyclic group | 479 | 1 | C479 | 479,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C480 | Cyclic group | 480 | 1 | C480 | 480,4 |
C15⋊3C32 | 1st semidirect product of C15 and C32 acting via C32/C16=C2 | 480 | 2 | C15:3C32 | 480,3 |
C15⋊C32 | 1st semidirect product of C15 and C32 acting via C32/C8=C4 | 480 | 4 | C15:C32 | 480,6 |
C5×C3⋊C32 | Direct product of C5 and C3⋊C32 | 480 | 2 | C5xC3:C32 | 480,1 |
C3×C5⋊C32 | Direct product of C3 and C5⋊C32 | 480 | 4 | C3xC5:C32 | 480,5 |
C3×C5⋊2C32 | Direct product of C3 and C5⋊2C32 | 480 | 2 | C3xC5:2C32 | 480,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C481 | Cyclic group | 481 | 1 | C481 | 481,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C482 | Cyclic group | 482 | 1 | C482 | 482,2 |
D241 | Dihedral group | 241 | 2+ | D241 | 482,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C483 | Cyclic group | 483 | 1 | C483 | 483,2 |
C7⋊C3×C23 | Direct product of C23 and C7⋊C3 | 161 | 3 | C7:C3xC23 | 483,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C484 | Cyclic group | 484 | 1 | C484 | 484,2 |
Dic121 | Dicyclic group; = C121⋊C4 | 484 | 2- | Dic121 | 484,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C485 | Cyclic group | 485 | 1 | C485 | 485,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C486 | Cyclic group | 486 | 1 | C486 | 486,2 |
D243 | Dihedral group | 243 | 2+ | D243 | 486,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C487 | Cyclic group | 487 | 1 | C487 | 487,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C488 | Cyclic group | 488 | 1 | C488 | 488,2 |
C61⋊C8 | The semidirect product of C61 and C8 acting via C8/C2=C4 | 488 | 4- | C61:C8 | 488,3 |
C61⋊2C8 | The semidirect product of C61 and C8 acting via C8/C4=C2 | 488 | 2 | C61:2C8 | 488,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C489 | Cyclic group | 489 | 1 | C489 | 489,2 |
C163⋊C3 | The semidirect product of C163 and C3 acting faithfully | 163 | 3 | C163:C3 | 489,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C490 | Cyclic group | 490 | 1 | C490 | 490,4 |
D245 | Dihedral group | 245 | 2+ | D245 | 490,3 |
D5×C49 | Direct product of C49 and D5 | 245 | 2 | D5xC49 | 490,1 |
C5×D49 | Direct product of C5 and D49 | 245 | 2 | C5xD49 | 490,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C491 | Cyclic group | 491 | 1 | C491 | 491,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C492 | Cyclic group | 492 | 1 | C492 | 492,4 |
Dic123 | Dicyclic group; = C3⋊Dic41 | 492 | 2- | Dic123 | 492,3 |
C41⋊Dic3 | The semidirect product of C41 and Dic3 acting via Dic3/C3=C4 | 123 | 4 | C41:Dic3 | 492,6 |
Dic3×C41 | Direct product of C41 and Dic3 | 492 | 2 | Dic3xC41 | 492,1 |
C3×Dic41 | Direct product of C3 and Dic41 | 492 | 2 | C3xDic41 | 492,2 |
C3×C41⋊C4 | Direct product of C3 and C41⋊C4 | 123 | 4 | C3xC41:C4 | 492,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C493 | Cyclic group | 493 | 1 | C493 | 493,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C494 | Cyclic group | 494 | 1 | C494 | 494,4 |
D247 | Dihedral group | 247 | 2+ | D247 | 494,3 |
C19×D13 | Direct product of C19 and D13 | 247 | 2 | C19xD13 | 494,1 |
C13×D19 | Direct product of C13 and D19 | 247 | 2 | C13xD19 | 494,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C495 | Cyclic group | 495 | 1 | C495 | 495,2 |
C9×C11⋊C5 | Direct product of C9 and C11⋊C5 | 99 | 5 | C9xC11:C5 | 495,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C496 | Cyclic group | 496 | 1 | C496 | 496,2 |
C31⋊C16 | The semidirect product of C31 and C16 acting via C16/C8=C2 | 496 | 2 | C31:C16 | 496,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C497 | Cyclic group | 497 | 1 | C497 | 497,2 |
C71⋊C7 | The semidirect product of C71 and C7 acting faithfully | 71 | 7 | C71:C7 | 497,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C498 | Cyclic group | 498 | 1 | C498 | 498,4 |
D249 | Dihedral group | 249 | 2+ | D249 | 498,3 |
S3×C83 | Direct product of C83 and S3 | 249 | 2 | S3xC83 | 498,1 |
C3×D83 | Direct product of C3 and D83 | 249 | 2 | C3xD83 | 498,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C499 | Cyclic group | 499 | 1 | C499 | 499,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C500 | Cyclic group | 500 | 1 | C500 | 500,2 |
Dic125 | Dicyclic group; = C125⋊2C4 | 500 | 2- | Dic125 | 500,1 |
C125⋊C4 | The semidirect product of C125 and C4 acting faithfully | 125 | 4+ | C125:C4 | 500,3 |