Extensions 1→N→G→Q→1 with N=C3 and Q=He3⋊C3

Direct product G=N×Q with N=C3 and Q=He3⋊C3

Non-split extensions G=N.Q with N=C3 and Q=He3⋊C3
extensionφ:Q→Aut NdρLabelID
C3.1(He3⋊C3) = C32.20He3central extension (φ=1)81C3.1(He3:C3)243,15
C3.2(He3⋊C3) = He3⋊C9central extension (φ=1)81C3.2(He3:C3)243,17
C3.3(He3⋊C3) = C32.24He3central stem extension (φ=1)81C3.3(He3:C3)243,3
C3.4(He3⋊C3) = C32.27He3central stem extension (φ=1)81C3.4(He3:C3)243,6
C3.5(He3⋊C3) = C32.29He3central stem extension (φ=1)81C3.5(He3:C3)243,8
C3.6(He3⋊C3) = C92⋊C3central stem extension (φ=1)273C3.6(He3:C3)243,25
C3.7(He3⋊C3) = C922C3central stem extension (φ=1)273C3.7(He3:C3)243,26
C3.8(He3⋊C3) = C92.C3central stem extension (φ=1)273C3.8(He3:C3)243,27
C3.9(He3⋊C3) = C32.He3central stem extension (φ=1)279C3.9(He3:C3)243,28
C3.10(He3⋊C3) = C32.5He3central stem extension (φ=1)279C3.10(He3:C3)243,29
C3.11(He3⋊C3) = C32.6He3central stem extension (φ=1)279C3.11(He3:C3)243,30