Copied to
clipboard

G = He3⋊C9order 243 = 35

The semidirect product of He3 and C9 acting via C9/C3=C3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: He3⋊C9, C32.21He3, C33.21C32, C32.13- 1+2, C3.2C3≀C3, C32⋊C95C3, (C32×C9)⋊1C3, (C3×He3).3C3, C32.1(C3×C9), C3.7(C32⋊C9), C3.2(He3.C3), C3.2(He3⋊C3), SmallGroup(243,17)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — He3⋊C9
C1C3C32C33C3×He3 — He3⋊C9
C1C3C32 — He3⋊C9
C1C32C33 — He3⋊C9
C1C32C33 — He3⋊C9

Generators and relations for He3⋊C9
 G = < a,b,c,d | a3=b3=c3=d9=1, ab=ba, cac-1=dad-1=ab-1, bc=cb, bd=db, dcd-1=a-1b-1c >

3C3
3C3
3C3
9C3
9C3
9C3
3C32
3C9
3C32
3C32
3C32
3C9
3C9
3C32
3C32
9C9
9C32
9C32
9C9
9C32
3He3
3C33
3C3×C9
3C3×C9
3He3
3C3×C9
3C3×C9
3C3×C9
3C3×C9

Smallest permutation representation of He3⋊C9
On 81 points
Generators in S81
(1 45 11)(2 71 34)(3 62 46)(4 39 14)(5 65 28)(6 56 49)(7 42 17)(8 68 31)(9 59 52)(10 79 69)(12 27 61)(13 73 72)(15 21 55)(16 76 66)(18 24 58)(19 38 35)(20 64 47)(22 41 29)(23 67 50)(25 44 32)(26 70 53)(30 77 57)(33 80 60)(36 74 63)(37 54 81)(40 48 75)(43 51 78)
(1 80 26)(2 81 27)(3 73 19)(4 74 20)(5 75 21)(6 76 22)(7 77 23)(8 78 24)(9 79 25)(10 32 52)(11 33 53)(12 34 54)(13 35 46)(14 36 47)(15 28 48)(16 29 49)(17 30 50)(18 31 51)(37 61 71)(38 62 72)(39 63 64)(40 55 65)(41 56 66)(42 57 67)(43 58 68)(44 59 69)(45 60 70)
(1 4 7)(2 28 58)(3 41 32)(5 31 61)(6 44 35)(8 34 55)(9 38 29)(10 19 66)(11 47 30)(12 40 24)(13 22 69)(14 50 33)(15 43 27)(16 25 72)(17 53 36)(18 37 21)(20 23 26)(39 57 70)(42 60 64)(45 63 67)(46 76 59)(48 68 81)(49 79 62)(51 71 75)(52 73 56)(54 65 78)(74 77 80)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,45,11)(2,71,34)(3,62,46)(4,39,14)(5,65,28)(6,56,49)(7,42,17)(8,68,31)(9,59,52)(10,79,69)(12,27,61)(13,73,72)(15,21,55)(16,76,66)(18,24,58)(19,38,35)(20,64,47)(22,41,29)(23,67,50)(25,44,32)(26,70,53)(30,77,57)(33,80,60)(36,74,63)(37,54,81)(40,48,75)(43,51,78), (1,80,26)(2,81,27)(3,73,19)(4,74,20)(5,75,21)(6,76,22)(7,77,23)(8,78,24)(9,79,25)(10,32,52)(11,33,53)(12,34,54)(13,35,46)(14,36,47)(15,28,48)(16,29,49)(17,30,50)(18,31,51)(37,61,71)(38,62,72)(39,63,64)(40,55,65)(41,56,66)(42,57,67)(43,58,68)(44,59,69)(45,60,70), (1,4,7)(2,28,58)(3,41,32)(5,31,61)(6,44,35)(8,34,55)(9,38,29)(10,19,66)(11,47,30)(12,40,24)(13,22,69)(14,50,33)(15,43,27)(16,25,72)(17,53,36)(18,37,21)(20,23,26)(39,57,70)(42,60,64)(45,63,67)(46,76,59)(48,68,81)(49,79,62)(51,71,75)(52,73,56)(54,65,78)(74,77,80), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,45,11)(2,71,34)(3,62,46)(4,39,14)(5,65,28)(6,56,49)(7,42,17)(8,68,31)(9,59,52)(10,79,69)(12,27,61)(13,73,72)(15,21,55)(16,76,66)(18,24,58)(19,38,35)(20,64,47)(22,41,29)(23,67,50)(25,44,32)(26,70,53)(30,77,57)(33,80,60)(36,74,63)(37,54,81)(40,48,75)(43,51,78), (1,80,26)(2,81,27)(3,73,19)(4,74,20)(5,75,21)(6,76,22)(7,77,23)(8,78,24)(9,79,25)(10,32,52)(11,33,53)(12,34,54)(13,35,46)(14,36,47)(15,28,48)(16,29,49)(17,30,50)(18,31,51)(37,61,71)(38,62,72)(39,63,64)(40,55,65)(41,56,66)(42,57,67)(43,58,68)(44,59,69)(45,60,70), (1,4,7)(2,28,58)(3,41,32)(5,31,61)(6,44,35)(8,34,55)(9,38,29)(10,19,66)(11,47,30)(12,40,24)(13,22,69)(14,50,33)(15,43,27)(16,25,72)(17,53,36)(18,37,21)(20,23,26)(39,57,70)(42,60,64)(45,63,67)(46,76,59)(48,68,81)(49,79,62)(51,71,75)(52,73,56)(54,65,78)(74,77,80), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,45,11),(2,71,34),(3,62,46),(4,39,14),(5,65,28),(6,56,49),(7,42,17),(8,68,31),(9,59,52),(10,79,69),(12,27,61),(13,73,72),(15,21,55),(16,76,66),(18,24,58),(19,38,35),(20,64,47),(22,41,29),(23,67,50),(25,44,32),(26,70,53),(30,77,57),(33,80,60),(36,74,63),(37,54,81),(40,48,75),(43,51,78)], [(1,80,26),(2,81,27),(3,73,19),(4,74,20),(5,75,21),(6,76,22),(7,77,23),(8,78,24),(9,79,25),(10,32,52),(11,33,53),(12,34,54),(13,35,46),(14,36,47),(15,28,48),(16,29,49),(17,30,50),(18,31,51),(37,61,71),(38,62,72),(39,63,64),(40,55,65),(41,56,66),(42,57,67),(43,58,68),(44,59,69),(45,60,70)], [(1,4,7),(2,28,58),(3,41,32),(5,31,61),(6,44,35),(8,34,55),(9,38,29),(10,19,66),(11,47,30),(12,40,24),(13,22,69),(14,50,33),(15,43,27),(16,25,72),(17,53,36),(18,37,21),(20,23,26),(39,57,70),(42,60,64),(45,63,67),(46,76,59),(48,68,81),(49,79,62),(51,71,75),(52,73,56),(54,65,78),(74,77,80)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)]])

He3⋊C9 is a maximal subgroup of   He3⋊C18  He3⋊D9  He32D9

51 conjugacy classes

class 1 3A···3H3I···3N3O···3T9A···9R9S···9AD
order13···33···33···39···99···9
size11···13···39···93···39···9

51 irreducible representations

dim1111133333
type+
imageC1C3C3C3C9He33- 1+2C3≀C3He3.C3He3⋊C3
kernelHe3⋊C9C32⋊C9C32×C9C3×He3He3C32C32C3C3C3
# reps14221824666

Matrix representation of He3⋊C9 in GL4(𝔽19) generated by

1000
0010
0001
0100
,
1000
01100
00110
00011
,
7000
0100
0070
00011
,
17000
0131515
0101510
0131310
G:=sub<GL(4,GF(19))| [1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[7,0,0,0,0,1,0,0,0,0,7,0,0,0,0,11],[17,0,0,0,0,13,10,13,0,15,15,13,0,15,10,10] >;

He3⋊C9 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes C_9
% in TeX

G:=Group("He3:C9");
// GroupNames label

G:=SmallGroup(243,17);
// by ID

G=gap.SmallGroup(243,17);
# by ID

G:=PCGroup([5,-3,3,-3,3,-3,135,121,1352,457]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^9=1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*b^-1*c>;
// generators/relations

Export

Subgroup lattice of He3⋊C9 in TeX

׿
×
𝔽