Extensions 1→N→G→Q→1 with N=C3 and Q=C3×3- 1+2

Direct product G=N×Q with N=C3 and Q=C3×3- 1+2
dρLabelID
C32×3- 1+281C3^2xES-(3,1)243,63


Non-split extensions G=N.Q with N=C3 and Q=C3×3- 1+2
extensionφ:Q→Aut NdρLabelID
C3.1(C3×3- 1+2) = C3×C32⋊C9central extension (φ=1)81C3.1(C3xES-(3,1))243,32
C3.2(C3×3- 1+2) = C3×C9⋊C9central extension (φ=1)243C3.2(C3xES-(3,1))243,33
C3.3(C3×3- 1+2) = C9×3- 1+2central extension (φ=1)81C3.3(C3xES-(3,1))243,36
C3.4(C3×3- 1+2) = C34.C3central stem extension (φ=1)27C3.4(C3xES-(3,1))243,38
C3.5(C3×3- 1+2) = C9⋊He3central stem extension (φ=1)81C3.5(C3xES-(3,1))243,39
C3.6(C3×3- 1+2) = C9⋊3- 1+2central stem extension (φ=1)81C3.6(C3xES-(3,1))243,41
C3.7(C3×3- 1+2) = C33.31C32central stem extension (φ=1)81C3.7(C3xES-(3,1))243,42
C3.8(C3×3- 1+2) = C927C3central stem extension (φ=1)81C3.8(C3xES-(3,1))243,43
C3.9(C3×3- 1+2) = C928C3central stem extension (φ=1)81C3.9(C3xES-(3,1))243,46
C3.10(C3×3- 1+2) = C929C3central stem extension (φ=1)81C3.10(C3xES-(3,1))243,47

׿
×
𝔽