direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C3×3- 1+2, C9⋊C32, C33.2C3, C3.2C33, C32.8C32, (C3×C9)⋊4C3, SmallGroup(81,13)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C3×3- 1+2
G = < a,b,c | a3=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >
(1 13 21)(2 14 22)(3 15 23)(4 16 24)(5 17 25)(6 18 26)(7 10 27)(8 11 19)(9 12 20)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 16 27)(2 14 22)(3 12 26)(4 10 21)(5 17 25)(6 15 20)(7 13 24)(8 11 19)(9 18 23)
G:=sub<Sym(27)| (1,13,21)(2,14,22)(3,15,23)(4,16,24)(5,17,25)(6,18,26)(7,10,27)(8,11,19)(9,12,20), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,16,27)(2,14,22)(3,12,26)(4,10,21)(5,17,25)(6,15,20)(7,13,24)(8,11,19)(9,18,23)>;
G:=Group( (1,13,21)(2,14,22)(3,15,23)(4,16,24)(5,17,25)(6,18,26)(7,10,27)(8,11,19)(9,12,20), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,16,27)(2,14,22)(3,12,26)(4,10,21)(5,17,25)(6,15,20)(7,13,24)(8,11,19)(9,18,23) );
G=PermutationGroup([[(1,13,21),(2,14,22),(3,15,23),(4,16,24),(5,17,25),(6,18,26),(7,10,27),(8,11,19),(9,12,20)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,16,27),(2,14,22),(3,12,26),(4,10,21),(5,17,25),(6,15,20),(7,13,24),(8,11,19),(9,18,23)]])
G:=TransitiveGroup(27,16);
C3×3- 1+2 is a maximal subgroup of
C33.S3 C33.C32 C33.3C32 C32.28He3 3- 1+2⋊C9 C34.C3 C9⋊He3 C32.23C33 C9⋊3- 1+2 C92⋊7C3 C92⋊8C3 C92⋊9C3 C33⋊C32 He3.C32 He3⋊C32 C32.C33 C9.2He3 3- 1+4
C3×3- 1+2 is a maximal quotient of
C34.C3 C9⋊He3 C9⋊3- 1+2 C33.31C32 C92⋊7C3 C92⋊8C3 C92⋊9C3
33 conjugacy classes
class | 1 | 3A | ··· | 3H | 3I | ··· | 3N | 9A | ··· | 9R |
order | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 |
type | + | ||||
image | C1 | C3 | C3 | C3 | 3- 1+2 |
kernel | C3×3- 1+2 | C3×C9 | 3- 1+2 | C33 | C3 |
# reps | 1 | 6 | 18 | 2 | 6 |
Matrix representation of C3×3- 1+2 ►in GL4(𝔽19) generated by
7 | 0 | 0 | 0 |
0 | 11 | 0 | 0 |
0 | 0 | 11 | 0 |
0 | 0 | 0 | 11 |
7 | 0 | 0 | 0 |
0 | 0 | 7 | 0 |
0 | 18 | 18 | 10 |
0 | 12 | 12 | 1 |
7 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 0 |
0 | 7 | 8 | 7 |
G:=sub<GL(4,GF(19))| [7,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[7,0,0,0,0,0,18,12,0,7,18,12,0,0,10,1],[7,0,0,0,0,1,0,7,0,0,11,8,0,0,0,7] >;
C3×3- 1+2 in GAP, Magma, Sage, TeX
C_3\times 3_-^{1+2}
% in TeX
G:=Group("C3xES-(3,1)");
// GroupNames label
G:=SmallGroup(81,13);
// by ID
G=gap.SmallGroup(81,13);
# by ID
G:=PCGroup([4,-3,3,3,-3,108,241]);
// Polycyclic
G:=Group<a,b,c|a^3=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export