Extensions 1→N→G→Q→1 with N=C15 and Q=C3⋊S3

Direct product G=N×Q with N=C15 and Q=C3⋊S3
dρLabelID
C15×C3⋊S390C15xC3:S3270,26

Semidirect products G=N:Q with N=C15 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C151(C3⋊S3) = C33⋊D5φ: C3⋊S3/C32C2 ⊆ Aut C15135C15:1(C3:S3)270,29
C152(C3⋊S3) = C3×C3⋊D15φ: C3⋊S3/C32C2 ⊆ Aut C1590C15:2(C3:S3)270,27
C153(C3⋊S3) = C5×C33⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C15135C15:3(C3:S3)270,28

Non-split extensions G=N.Q with N=C15 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C15.1(C3⋊S3) = C3⋊D45φ: C3⋊S3/C32C2 ⊆ Aut C15135C15.1(C3:S3)270,18
C15.2(C3⋊S3) = C32⋊D15φ: C3⋊S3/C32C2 ⊆ Aut C15456C15.2(C3:S3)270,19
C15.3(C3⋊S3) = C5×C9⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C15135C15.3(C3:S3)270,16
C15.4(C3⋊S3) = C5×He3⋊C2central extension (φ=1)453C15.4(C3:S3)270,17

׿
×
𝔽