Copied to
clipboard

G = C3⋊D45order 270 = 2·33·5

The semidirect product of C3 and D45 acting via D45/C45=C2

metabelian, supersoluble, monomial, A-group

Aliases: C3⋊D45, C9⋊D15, C451S3, C151D9, C32.3D15, C5⋊(C9⋊S3), (C3×C9)⋊3D5, (C3×C45)⋊3C2, C3.(C3⋊D15), (C3×C15).3S3, C15.1(C3⋊S3), SmallGroup(270,18)

Series: Derived Chief Lower central Upper central

C1C3×C45 — C3⋊D45
C1C3C15C3×C15C3×C45 — C3⋊D45
C3×C45 — C3⋊D45
C1

Generators and relations for C3⋊D45
 G = < a,b,c | a3=b45=c2=1, ab=ba, cac=a-1, cbc=b-1 >

135C2
45S3
45S3
45S3
45S3
27D5
15D9
15D9
15D9
15C3⋊S3
9D15
9D15
9D15
9D15
5C9⋊S3
3D45
3C3⋊D15
3D45
3D45

Smallest permutation representation of C3⋊D45
On 135 points
Generators in S135
(1 126 83)(2 127 84)(3 128 85)(4 129 86)(5 130 87)(6 131 88)(7 132 89)(8 133 90)(9 134 46)(10 135 47)(11 91 48)(12 92 49)(13 93 50)(14 94 51)(15 95 52)(16 96 53)(17 97 54)(18 98 55)(19 99 56)(20 100 57)(21 101 58)(22 102 59)(23 103 60)(24 104 61)(25 105 62)(26 106 63)(27 107 64)(28 108 65)(29 109 66)(30 110 67)(31 111 68)(32 112 69)(33 113 70)(34 114 71)(35 115 72)(36 116 73)(37 117 74)(38 118 75)(39 119 76)(40 120 77)(41 121 78)(42 122 79)(43 123 80)(44 124 81)(45 125 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)
(2 45)(3 44)(4 43)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)(46 118)(47 117)(48 116)(49 115)(50 114)(51 113)(52 112)(53 111)(54 110)(55 109)(56 108)(57 107)(58 106)(59 105)(60 104)(61 103)(62 102)(63 101)(64 100)(65 99)(66 98)(67 97)(68 96)(69 95)(70 94)(71 93)(72 92)(73 91)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 120)(90 119)

G:=sub<Sym(135)| (1,126,83)(2,127,84)(3,128,85)(4,129,86)(5,130,87)(6,131,88)(7,132,89)(8,133,90)(9,134,46)(10,135,47)(11,91,48)(12,92,49)(13,93,50)(14,94,51)(15,95,52)(16,96,53)(17,97,54)(18,98,55)(19,99,56)(20,100,57)(21,101,58)(22,102,59)(23,103,60)(24,104,61)(25,105,62)(26,106,63)(27,107,64)(28,108,65)(29,109,66)(30,110,67)(31,111,68)(32,112,69)(33,113,70)(34,114,71)(35,115,72)(36,116,73)(37,117,74)(38,118,75)(39,119,76)(40,120,77)(41,121,78)(42,122,79)(43,123,80)(44,124,81)(45,125,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,112)(53,111)(54,110)(55,109)(56,108)(57,107)(58,106)(59,105)(60,104)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(73,91)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)>;

G:=Group( (1,126,83)(2,127,84)(3,128,85)(4,129,86)(5,130,87)(6,131,88)(7,132,89)(8,133,90)(9,134,46)(10,135,47)(11,91,48)(12,92,49)(13,93,50)(14,94,51)(15,95,52)(16,96,53)(17,97,54)(18,98,55)(19,99,56)(20,100,57)(21,101,58)(22,102,59)(23,103,60)(24,104,61)(25,105,62)(26,106,63)(27,107,64)(28,108,65)(29,109,66)(30,110,67)(31,111,68)(32,112,69)(33,113,70)(34,114,71)(35,115,72)(36,116,73)(37,117,74)(38,118,75)(39,119,76)(40,120,77)(41,121,78)(42,122,79)(43,123,80)(44,124,81)(45,125,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135), (2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,112)(53,111)(54,110)(55,109)(56,108)(57,107)(58,106)(59,105)(60,104)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(73,91)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119) );

G=PermutationGroup([[(1,126,83),(2,127,84),(3,128,85),(4,129,86),(5,130,87),(6,131,88),(7,132,89),(8,133,90),(9,134,46),(10,135,47),(11,91,48),(12,92,49),(13,93,50),(14,94,51),(15,95,52),(16,96,53),(17,97,54),(18,98,55),(19,99,56),(20,100,57),(21,101,58),(22,102,59),(23,103,60),(24,104,61),(25,105,62),(26,106,63),(27,107,64),(28,108,65),(29,109,66),(30,110,67),(31,111,68),(32,112,69),(33,113,70),(34,114,71),(35,115,72),(36,116,73),(37,117,74),(38,118,75),(39,119,76),(40,120,77),(41,121,78),(42,122,79),(43,123,80),(44,124,81),(45,125,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)], [(2,45),(3,44),(4,43),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24),(46,118),(47,117),(48,116),(49,115),(50,114),(51,113),(52,112),(53,111),(54,110),(55,109),(56,108),(57,107),(58,106),(59,105),(60,104),(61,103),(62,102),(63,101),(64,100),(65,99),(66,98),(67,97),(68,96),(69,95),(70,94),(71,93),(72,92),(73,91),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,120),(90,119)]])

69 conjugacy classes

class 1  2 3A3B3C3D5A5B9A···9I15A···15P45A···45AJ
order123333559···915···1545···45
size11352222222···22···22···2

69 irreducible representations

dim112222222
type+++++++++
imageC1C2S3S3D5D9D15D15D45
kernelC3⋊D45C3×C45C45C3×C15C3×C9C15C9C32C3
# reps11312912436

Matrix representation of C3⋊D45 in GL4(𝔽181) generated by

18018000
1000
0001
00180180
,
1182800
1539000
00454
00127131
,
1000
18018000
0011229
009869
G:=sub<GL(4,GF(181))| [180,1,0,0,180,0,0,0,0,0,0,180,0,0,1,180],[118,153,0,0,28,90,0,0,0,0,4,127,0,0,54,131],[1,180,0,0,0,180,0,0,0,0,112,98,0,0,29,69] >;

C3⋊D45 in GAP, Magma, Sage, TeX

C_3\rtimes D_{45}
% in TeX

G:=Group("C3:D45");
// GroupNames label

G:=SmallGroup(270,18);
// by ID

G=gap.SmallGroup(270,18);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,-3,941,906,182,1443,4504]);
// Polycyclic

G:=Group<a,b,c|a^3=b^45=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D45 in TeX

׿
×
𝔽