Extensions 1→N→G→Q→1 with N=C9⋊D4 and Q=C22

Direct product G=N×Q with N=C9⋊D4 and Q=C22

Semidirect products G=N:Q with N=C9⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C9⋊D41C22 = C2×D4×D9φ: C22/C2C2 ⊆ Out C9⋊D472C9:D4:1C2^2288,356
C9⋊D42C22 = C2×D42D9φ: C22/C2C2 ⊆ Out C9⋊D4144C9:D4:2C2^2288,357
C9⋊D43C22 = D46D18φ: C22/C2C2 ⊆ Out C9⋊D4724C9:D4:3C2^2288,358
C9⋊D44C22 = C4○D4×D9φ: C22/C2C2 ⊆ Out C9⋊D4724C9:D4:4C2^2288,362
C9⋊D45C22 = D48D18φ: C22/C2C2 ⊆ Out C9⋊D4724+C9:D4:5C2^2288,363
C9⋊D46C22 = C2×D365C2φ: trivial image144C9:D4:6C2^2288,355

Non-split extensions G=N.Q with N=C9⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C9⋊D4.C22 = D4.10D18φ: C22/C2C2 ⊆ Out C9⋊D41444-C9:D4.C2^2288,364
C9⋊D4.2C22 = Q8.15D18φ: trivial image1444C9:D4.2C2^2288,361