Copied to
clipboard

G = Q8.15D18order 288 = 25·32

1st non-split extension by Q8 of D18 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q8.15D18, C912- 1+4, C36.24C23, C18.10C24, D18.5C23, D36.13C22, Dic9.6C23, Dic18.13C22, (C2×Q8)⋊7D9, (Q8×D9)⋊4C2, (Q8×C18)⋊7C2, Q83D94C2, (C2×C4).22D18, (C3×Q8).61D6, (C6×Q8).22S3, D365C26C2, (C2×C12).103D6, C6.47(S3×C23), (C4×D9).5C22, C4.24(C22×D9), C2.11(C23×D9), C9⋊D4.2C22, (C2×C18).68C23, (C2×C36).51C22, C12.64(C22×S3), C3.(Q8.15D6), (Q8×C9).10C22, C22.7(C22×D9), (C2×C6).226(C22×S3), SmallGroup(288,361)

Series: Derived Chief Lower central Upper central

C1C18 — Q8.15D18
C1C3C9C18D18C4×D9Q8×D9 — Q8.15D18
C9C18 — Q8.15D18
C1C2C2×Q8

Generators and relations for Q8.15D18
 G = < a,b,c,d | a4=c18=1, b2=d2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=a2c-1 >

Subgroups: 824 in 219 conjugacy classes, 102 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, Q8, C9, Dic3, C12, D6, C2×C6, C2×Q8, C2×Q8, C4○D4, D9, C18, C18, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×Q8, 2- 1+4, Dic9, C36, D18, C2×C18, C4○D12, S3×Q8, Q83S3, C6×Q8, Dic18, C4×D9, D36, C9⋊D4, C2×C36, Q8×C9, Q8.15D6, D365C2, Q8×D9, Q83D9, Q8×C18, Q8.15D18
Quotients: C1, C2, C22, S3, C23, D6, C24, D9, C22×S3, 2- 1+4, D18, S3×C23, C22×D9, Q8.15D6, C23×D9, Q8.15D18

Smallest permutation representation of Q8.15D18
On 144 points
Generators in S144
(1 126 129 74)(2 109 130 75)(3 110 131 76)(4 111 132 77)(5 112 133 78)(6 113 134 79)(7 114 135 80)(8 115 136 81)(9 116 137 82)(10 117 138 83)(11 118 139 84)(12 119 140 85)(13 120 141 86)(14 121 142 87)(15 122 143 88)(16 123 144 89)(17 124 127 90)(18 125 128 73)(19 104 51 62)(20 105 52 63)(21 106 53 64)(22 107 54 65)(23 108 37 66)(24 91 38 67)(25 92 39 68)(26 93 40 69)(27 94 41 70)(28 95 42 71)(29 96 43 72)(30 97 44 55)(31 98 45 56)(32 99 46 57)(33 100 47 58)(34 101 48 59)(35 102 49 60)(36 103 50 61)
(1 105 129 63)(2 106 130 64)(3 107 131 65)(4 108 132 66)(5 91 133 67)(6 92 134 68)(7 93 135 69)(8 94 136 70)(9 95 137 71)(10 96 138 72)(11 97 139 55)(12 98 140 56)(13 99 141 57)(14 100 142 58)(15 101 143 59)(16 102 144 60)(17 103 127 61)(18 104 128 62)(19 73 51 125)(20 74 52 126)(21 75 53 109)(22 76 54 110)(23 77 37 111)(24 78 38 112)(25 79 39 113)(26 80 40 114)(27 81 41 115)(28 82 42 116)(29 83 43 117)(30 84 44 118)(31 85 45 119)(32 86 46 120)(33 87 47 121)(34 88 48 122)(35 89 49 123)(36 90 50 124)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 71 129 95)(2 94 130 70)(3 69 131 93)(4 92 132 68)(5 67 133 91)(6 108 134 66)(7 65 135 107)(8 106 136 64)(9 63 137 105)(10 104 138 62)(11 61 139 103)(12 102 140 60)(13 59 141 101)(14 100 142 58)(15 57 143 99)(16 98 144 56)(17 55 127 97)(18 96 128 72)(19 117 51 83)(20 82 52 116)(21 115 53 81)(22 80 54 114)(23 113 37 79)(24 78 38 112)(25 111 39 77)(26 76 40 110)(27 109 41 75)(28 74 42 126)(29 125 43 73)(30 90 44 124)(31 123 45 89)(32 88 46 122)(33 121 47 87)(34 86 48 120)(35 119 49 85)(36 84 50 118)

G:=sub<Sym(144)| (1,126,129,74)(2,109,130,75)(3,110,131,76)(4,111,132,77)(5,112,133,78)(6,113,134,79)(7,114,135,80)(8,115,136,81)(9,116,137,82)(10,117,138,83)(11,118,139,84)(12,119,140,85)(13,120,141,86)(14,121,142,87)(15,122,143,88)(16,123,144,89)(17,124,127,90)(18,125,128,73)(19,104,51,62)(20,105,52,63)(21,106,53,64)(22,107,54,65)(23,108,37,66)(24,91,38,67)(25,92,39,68)(26,93,40,69)(27,94,41,70)(28,95,42,71)(29,96,43,72)(30,97,44,55)(31,98,45,56)(32,99,46,57)(33,100,47,58)(34,101,48,59)(35,102,49,60)(36,103,50,61), (1,105,129,63)(2,106,130,64)(3,107,131,65)(4,108,132,66)(5,91,133,67)(6,92,134,68)(7,93,135,69)(8,94,136,70)(9,95,137,71)(10,96,138,72)(11,97,139,55)(12,98,140,56)(13,99,141,57)(14,100,142,58)(15,101,143,59)(16,102,144,60)(17,103,127,61)(18,104,128,62)(19,73,51,125)(20,74,52,126)(21,75,53,109)(22,76,54,110)(23,77,37,111)(24,78,38,112)(25,79,39,113)(26,80,40,114)(27,81,41,115)(28,82,42,116)(29,83,43,117)(30,84,44,118)(31,85,45,119)(32,86,46,120)(33,87,47,121)(34,88,48,122)(35,89,49,123)(36,90,50,124), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,71,129,95)(2,94,130,70)(3,69,131,93)(4,92,132,68)(5,67,133,91)(6,108,134,66)(7,65,135,107)(8,106,136,64)(9,63,137,105)(10,104,138,62)(11,61,139,103)(12,102,140,60)(13,59,141,101)(14,100,142,58)(15,57,143,99)(16,98,144,56)(17,55,127,97)(18,96,128,72)(19,117,51,83)(20,82,52,116)(21,115,53,81)(22,80,54,114)(23,113,37,79)(24,78,38,112)(25,111,39,77)(26,76,40,110)(27,109,41,75)(28,74,42,126)(29,125,43,73)(30,90,44,124)(31,123,45,89)(32,88,46,122)(33,121,47,87)(34,86,48,120)(35,119,49,85)(36,84,50,118)>;

G:=Group( (1,126,129,74)(2,109,130,75)(3,110,131,76)(4,111,132,77)(5,112,133,78)(6,113,134,79)(7,114,135,80)(8,115,136,81)(9,116,137,82)(10,117,138,83)(11,118,139,84)(12,119,140,85)(13,120,141,86)(14,121,142,87)(15,122,143,88)(16,123,144,89)(17,124,127,90)(18,125,128,73)(19,104,51,62)(20,105,52,63)(21,106,53,64)(22,107,54,65)(23,108,37,66)(24,91,38,67)(25,92,39,68)(26,93,40,69)(27,94,41,70)(28,95,42,71)(29,96,43,72)(30,97,44,55)(31,98,45,56)(32,99,46,57)(33,100,47,58)(34,101,48,59)(35,102,49,60)(36,103,50,61), (1,105,129,63)(2,106,130,64)(3,107,131,65)(4,108,132,66)(5,91,133,67)(6,92,134,68)(7,93,135,69)(8,94,136,70)(9,95,137,71)(10,96,138,72)(11,97,139,55)(12,98,140,56)(13,99,141,57)(14,100,142,58)(15,101,143,59)(16,102,144,60)(17,103,127,61)(18,104,128,62)(19,73,51,125)(20,74,52,126)(21,75,53,109)(22,76,54,110)(23,77,37,111)(24,78,38,112)(25,79,39,113)(26,80,40,114)(27,81,41,115)(28,82,42,116)(29,83,43,117)(30,84,44,118)(31,85,45,119)(32,86,46,120)(33,87,47,121)(34,88,48,122)(35,89,49,123)(36,90,50,124), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,71,129,95)(2,94,130,70)(3,69,131,93)(4,92,132,68)(5,67,133,91)(6,108,134,66)(7,65,135,107)(8,106,136,64)(9,63,137,105)(10,104,138,62)(11,61,139,103)(12,102,140,60)(13,59,141,101)(14,100,142,58)(15,57,143,99)(16,98,144,56)(17,55,127,97)(18,96,128,72)(19,117,51,83)(20,82,52,116)(21,115,53,81)(22,80,54,114)(23,113,37,79)(24,78,38,112)(25,111,39,77)(26,76,40,110)(27,109,41,75)(28,74,42,126)(29,125,43,73)(30,90,44,124)(31,123,45,89)(32,88,46,122)(33,121,47,87)(34,86,48,120)(35,119,49,85)(36,84,50,118) );

G=PermutationGroup([[(1,126,129,74),(2,109,130,75),(3,110,131,76),(4,111,132,77),(5,112,133,78),(6,113,134,79),(7,114,135,80),(8,115,136,81),(9,116,137,82),(10,117,138,83),(11,118,139,84),(12,119,140,85),(13,120,141,86),(14,121,142,87),(15,122,143,88),(16,123,144,89),(17,124,127,90),(18,125,128,73),(19,104,51,62),(20,105,52,63),(21,106,53,64),(22,107,54,65),(23,108,37,66),(24,91,38,67),(25,92,39,68),(26,93,40,69),(27,94,41,70),(28,95,42,71),(29,96,43,72),(30,97,44,55),(31,98,45,56),(32,99,46,57),(33,100,47,58),(34,101,48,59),(35,102,49,60),(36,103,50,61)], [(1,105,129,63),(2,106,130,64),(3,107,131,65),(4,108,132,66),(5,91,133,67),(6,92,134,68),(7,93,135,69),(8,94,136,70),(9,95,137,71),(10,96,138,72),(11,97,139,55),(12,98,140,56),(13,99,141,57),(14,100,142,58),(15,101,143,59),(16,102,144,60),(17,103,127,61),(18,104,128,62),(19,73,51,125),(20,74,52,126),(21,75,53,109),(22,76,54,110),(23,77,37,111),(24,78,38,112),(25,79,39,113),(26,80,40,114),(27,81,41,115),(28,82,42,116),(29,83,43,117),(30,84,44,118),(31,85,45,119),(32,86,46,120),(33,87,47,121),(34,88,48,122),(35,89,49,123),(36,90,50,124)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,71,129,95),(2,94,130,70),(3,69,131,93),(4,92,132,68),(5,67,133,91),(6,108,134,66),(7,65,135,107),(8,106,136,64),(9,63,137,105),(10,104,138,62),(11,61,139,103),(12,102,140,60),(13,59,141,101),(14,100,142,58),(15,57,143,99),(16,98,144,56),(17,55,127,97),(18,96,128,72),(19,117,51,83),(20,82,52,116),(21,115,53,81),(22,80,54,114),(23,113,37,79),(24,78,38,112),(25,111,39,77),(26,76,40,110),(27,109,41,75),(28,74,42,126),(29,125,43,73),(30,90,44,124),(31,123,45,89),(32,88,46,122),(33,121,47,87),(34,86,48,120),(35,119,49,85),(36,84,50,118)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A···4F4G4H4I4J6A6B6C9A9B9C12A···12F18A···18I36A···36R
order122222234···4444466699912···1218···1836···36
size1121818181822···2181818182222224···42···24···4

57 irreducible representations

dim11111222222444
type+++++++++++-
imageC1C2C2C2C2S3D6D6D9D18D182- 1+4Q8.15D6Q8.15D18
kernelQ8.15D18D365C2Q8×D9Q83D9Q8×C18C6×Q8C2×C12C3×Q8C2×Q8C2×C4Q8C9C3C1
# reps164411343912126

Matrix representation of Q8.15D18 in GL6(𝔽37)

100000
010000
0003610
00123635
00023635
0011036
,
100000
010000
003263431
0002630
00021110
00292905
,
11200000
17310000
000100
001000
00223635
000001
,
010000
100000
0053136
0002630
00021110
00823232

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,36,2,2,1,0,0,1,36,36,0,0,0,0,35,35,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,29,0,0,6,26,21,29,0,0,34,3,11,0,0,0,31,0,0,5],[11,17,0,0,0,0,20,31,0,0,0,0,0,0,0,1,2,0,0,0,1,0,2,0,0,0,0,0,36,0,0,0,0,0,35,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,8,0,0,31,26,21,2,0,0,3,3,11,32,0,0,6,0,0,32] >;

Q8.15D18 in GAP, Magma, Sage, TeX

Q_8._{15}D_{18}
% in TeX

G:=Group("Q8.15D18");
// GroupNames label

G:=SmallGroup(288,361);
// by ID

G=gap.SmallGroup(288,361);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^18=1,b^2=d^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽