Copied to
clipboard

G = D4.10D18order 288 = 25·32

The non-split extension by D4 of D18 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.10D18, Q8.16D18, C922- 1+4, C36.27C23, C18.13C24, D18.8C23, D36.14C22, Dic9.8C23, Dic18.14C22, C4○D46D9, (Q8×D9)⋊5C2, C3.(Q8○D12), C9⋊D4.C22, D42D95C2, (C3×D4).40D6, (C2×C4).23D18, (C3×Q8).64D6, D365C29C2, (C2×C12).106D6, C6.50(S3×C23), (C2×C18).5C23, (C4×D9).6C22, C2.14(C23×D9), C4.34(C22×D9), (C2×Dic18)⋊14C2, (C2×C36).52C22, (D4×C9).10C22, (Q8×C9).11C22, C22.4(C22×D9), C12.188(C22×S3), (C2×Dic9).19C22, (C9×C4○D4)⋊5C2, (C3×C4○D4).17S3, (C2×C6).11(C22×S3), SmallGroup(288,364)

Series: Derived Chief Lower central Upper central

C1C18 — D4.10D18
C1C3C9C18D18C4×D9Q8×D9 — D4.10D18
C9C18 — D4.10D18
C1C2C4○D4

Generators and relations for D4.10D18
 G = < a,b,c,d | a4=b2=1, c18=d2=a2, bab=cac-1=dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c17 >

Subgroups: 784 in 219 conjugacy classes, 102 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C9, Dic3, C12, C12, D6, C2×C6, C2×Q8, C4○D4, C4○D4, D9, C18, C18, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, 2- 1+4, Dic9, C36, C36, D18, C2×C18, C2×Dic6, C4○D12, D42S3, S3×Q8, C3×C4○D4, Dic18, C4×D9, D36, C2×Dic9, C9⋊D4, C2×C36, D4×C9, Q8×C9, Q8○D12, C2×Dic18, D365C2, D42D9, Q8×D9, C9×C4○D4, D4.10D18
Quotients: C1, C2, C22, S3, C23, D6, C24, D9, C22×S3, 2- 1+4, D18, S3×C23, C22×D9, Q8○D12, C23×D9, D4.10D18

Smallest permutation representation of D4.10D18
On 144 points
Generators in S144
(1 76 19 94)(2 95 20 77)(3 78 21 96)(4 97 22 79)(5 80 23 98)(6 99 24 81)(7 82 25 100)(8 101 26 83)(9 84 27 102)(10 103 28 85)(11 86 29 104)(12 105 30 87)(13 88 31 106)(14 107 32 89)(15 90 33 108)(16 73 34 91)(17 92 35 74)(18 75 36 93)(37 111 55 129)(38 130 56 112)(39 113 57 131)(40 132 58 114)(41 115 59 133)(42 134 60 116)(43 117 61 135)(44 136 62 118)(45 119 63 137)(46 138 64 120)(47 121 65 139)(48 140 66 122)(49 123 67 141)(50 142 68 124)(51 125 69 143)(52 144 70 126)(53 127 71 109)(54 110 72 128)
(1 112)(2 131)(3 114)(4 133)(5 116)(6 135)(7 118)(8 137)(9 120)(10 139)(11 122)(12 141)(13 124)(14 143)(15 126)(16 109)(17 128)(18 111)(19 130)(20 113)(21 132)(22 115)(23 134)(24 117)(25 136)(26 119)(27 138)(28 121)(29 140)(30 123)(31 142)(32 125)(33 144)(34 127)(35 110)(36 129)(37 75)(38 94)(39 77)(40 96)(41 79)(42 98)(43 81)(44 100)(45 83)(46 102)(47 85)(48 104)(49 87)(50 106)(51 89)(52 108)(53 91)(54 74)(55 93)(56 76)(57 95)(58 78)(59 97)(60 80)(61 99)(62 82)(63 101)(64 84)(65 103)(66 86)(67 105)(68 88)(69 107)(70 90)(71 73)(72 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 18 19 36)(2 35 20 17)(3 16 21 34)(4 33 22 15)(5 14 23 32)(6 31 24 13)(7 12 25 30)(8 29 26 11)(9 10 27 28)(37 56 55 38)(39 54 57 72)(40 71 58 53)(41 52 59 70)(42 69 60 51)(43 50 61 68)(44 67 62 49)(45 48 63 66)(46 65 64 47)(73 78 91 96)(74 95 92 77)(75 76 93 94)(79 108 97 90)(80 89 98 107)(81 106 99 88)(82 87 100 105)(83 104 101 86)(84 85 102 103)(109 132 127 114)(110 113 128 131)(111 130 129 112)(115 126 133 144)(116 143 134 125)(117 124 135 142)(118 141 136 123)(119 122 137 140)(120 139 138 121)

G:=sub<Sym(144)| (1,76,19,94)(2,95,20,77)(3,78,21,96)(4,97,22,79)(5,80,23,98)(6,99,24,81)(7,82,25,100)(8,101,26,83)(9,84,27,102)(10,103,28,85)(11,86,29,104)(12,105,30,87)(13,88,31,106)(14,107,32,89)(15,90,33,108)(16,73,34,91)(17,92,35,74)(18,75,36,93)(37,111,55,129)(38,130,56,112)(39,113,57,131)(40,132,58,114)(41,115,59,133)(42,134,60,116)(43,117,61,135)(44,136,62,118)(45,119,63,137)(46,138,64,120)(47,121,65,139)(48,140,66,122)(49,123,67,141)(50,142,68,124)(51,125,69,143)(52,144,70,126)(53,127,71,109)(54,110,72,128), (1,112)(2,131)(3,114)(4,133)(5,116)(6,135)(7,118)(8,137)(9,120)(10,139)(11,122)(12,141)(13,124)(14,143)(15,126)(16,109)(17,128)(18,111)(19,130)(20,113)(21,132)(22,115)(23,134)(24,117)(25,136)(26,119)(27,138)(28,121)(29,140)(30,123)(31,142)(32,125)(33,144)(34,127)(35,110)(36,129)(37,75)(38,94)(39,77)(40,96)(41,79)(42,98)(43,81)(44,100)(45,83)(46,102)(47,85)(48,104)(49,87)(50,106)(51,89)(52,108)(53,91)(54,74)(55,93)(56,76)(57,95)(58,78)(59,97)(60,80)(61,99)(62,82)(63,101)(64,84)(65,103)(66,86)(67,105)(68,88)(69,107)(70,90)(71,73)(72,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,18,19,36)(2,35,20,17)(3,16,21,34)(4,33,22,15)(5,14,23,32)(6,31,24,13)(7,12,25,30)(8,29,26,11)(9,10,27,28)(37,56,55,38)(39,54,57,72)(40,71,58,53)(41,52,59,70)(42,69,60,51)(43,50,61,68)(44,67,62,49)(45,48,63,66)(46,65,64,47)(73,78,91,96)(74,95,92,77)(75,76,93,94)(79,108,97,90)(80,89,98,107)(81,106,99,88)(82,87,100,105)(83,104,101,86)(84,85,102,103)(109,132,127,114)(110,113,128,131)(111,130,129,112)(115,126,133,144)(116,143,134,125)(117,124,135,142)(118,141,136,123)(119,122,137,140)(120,139,138,121)>;

G:=Group( (1,76,19,94)(2,95,20,77)(3,78,21,96)(4,97,22,79)(5,80,23,98)(6,99,24,81)(7,82,25,100)(8,101,26,83)(9,84,27,102)(10,103,28,85)(11,86,29,104)(12,105,30,87)(13,88,31,106)(14,107,32,89)(15,90,33,108)(16,73,34,91)(17,92,35,74)(18,75,36,93)(37,111,55,129)(38,130,56,112)(39,113,57,131)(40,132,58,114)(41,115,59,133)(42,134,60,116)(43,117,61,135)(44,136,62,118)(45,119,63,137)(46,138,64,120)(47,121,65,139)(48,140,66,122)(49,123,67,141)(50,142,68,124)(51,125,69,143)(52,144,70,126)(53,127,71,109)(54,110,72,128), (1,112)(2,131)(3,114)(4,133)(5,116)(6,135)(7,118)(8,137)(9,120)(10,139)(11,122)(12,141)(13,124)(14,143)(15,126)(16,109)(17,128)(18,111)(19,130)(20,113)(21,132)(22,115)(23,134)(24,117)(25,136)(26,119)(27,138)(28,121)(29,140)(30,123)(31,142)(32,125)(33,144)(34,127)(35,110)(36,129)(37,75)(38,94)(39,77)(40,96)(41,79)(42,98)(43,81)(44,100)(45,83)(46,102)(47,85)(48,104)(49,87)(50,106)(51,89)(52,108)(53,91)(54,74)(55,93)(56,76)(57,95)(58,78)(59,97)(60,80)(61,99)(62,82)(63,101)(64,84)(65,103)(66,86)(67,105)(68,88)(69,107)(70,90)(71,73)(72,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,18,19,36)(2,35,20,17)(3,16,21,34)(4,33,22,15)(5,14,23,32)(6,31,24,13)(7,12,25,30)(8,29,26,11)(9,10,27,28)(37,56,55,38)(39,54,57,72)(40,71,58,53)(41,52,59,70)(42,69,60,51)(43,50,61,68)(44,67,62,49)(45,48,63,66)(46,65,64,47)(73,78,91,96)(74,95,92,77)(75,76,93,94)(79,108,97,90)(80,89,98,107)(81,106,99,88)(82,87,100,105)(83,104,101,86)(84,85,102,103)(109,132,127,114)(110,113,128,131)(111,130,129,112)(115,126,133,144)(116,143,134,125)(117,124,135,142)(118,141,136,123)(119,122,137,140)(120,139,138,121) );

G=PermutationGroup([[(1,76,19,94),(2,95,20,77),(3,78,21,96),(4,97,22,79),(5,80,23,98),(6,99,24,81),(7,82,25,100),(8,101,26,83),(9,84,27,102),(10,103,28,85),(11,86,29,104),(12,105,30,87),(13,88,31,106),(14,107,32,89),(15,90,33,108),(16,73,34,91),(17,92,35,74),(18,75,36,93),(37,111,55,129),(38,130,56,112),(39,113,57,131),(40,132,58,114),(41,115,59,133),(42,134,60,116),(43,117,61,135),(44,136,62,118),(45,119,63,137),(46,138,64,120),(47,121,65,139),(48,140,66,122),(49,123,67,141),(50,142,68,124),(51,125,69,143),(52,144,70,126),(53,127,71,109),(54,110,72,128)], [(1,112),(2,131),(3,114),(4,133),(5,116),(6,135),(7,118),(8,137),(9,120),(10,139),(11,122),(12,141),(13,124),(14,143),(15,126),(16,109),(17,128),(18,111),(19,130),(20,113),(21,132),(22,115),(23,134),(24,117),(25,136),(26,119),(27,138),(28,121),(29,140),(30,123),(31,142),(32,125),(33,144),(34,127),(35,110),(36,129),(37,75),(38,94),(39,77),(40,96),(41,79),(42,98),(43,81),(44,100),(45,83),(46,102),(47,85),(48,104),(49,87),(50,106),(51,89),(52,108),(53,91),(54,74),(55,93),(56,76),(57,95),(58,78),(59,97),(60,80),(61,99),(62,82),(63,101),(64,84),(65,103),(66,86),(67,105),(68,88),(69,107),(70,90),(71,73),(72,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,18,19,36),(2,35,20,17),(3,16,21,34),(4,33,22,15),(5,14,23,32),(6,31,24,13),(7,12,25,30),(8,29,26,11),(9,10,27,28),(37,56,55,38),(39,54,57,72),(40,71,58,53),(41,52,59,70),(42,69,60,51),(43,50,61,68),(44,67,62,49),(45,48,63,66),(46,65,64,47),(73,78,91,96),(74,95,92,77),(75,76,93,94),(79,108,97,90),(80,89,98,107),(81,106,99,88),(82,87,100,105),(83,104,101,86),(84,85,102,103),(109,132,127,114),(110,113,128,131),(111,130,129,112),(115,126,133,144),(116,143,134,125),(117,124,135,142),(118,141,136,123),(119,122,137,140),(120,139,138,121)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E···4J6A6B6C6D9A9B9C12A12B12C12D12E18A18B18C18D···18L36A···36F36G···36O
order1222222344444···46666999121212121218181818···1836···3636···36
size1122218182222218···182444222224442224···42···24···4

57 irreducible representations

dim11111122222222444
type++++++++++++++---
imageC1C2C2C2C2C2S3D6D6D6D9D18D18D182- 1+4Q8○D12D4.10D18
kernelD4.10D18C2×Dic18D365C2D42D9Q8×D9C9×C4○D4C3×C4○D4C2×C12C3×D4C3×Q8C4○D4C2×C4D4Q8C9C3C1
# reps13362113313993126

Matrix representation of D4.10D18 in GL4(𝔽37) generated by

0010
0001
36000
03600
,
362149
3512823
149135
2823236
,
192416
35212120
4161835
2120216
,
35182133
1621716
2133219
17162135
G:=sub<GL(4,GF(37))| [0,0,36,0,0,0,0,36,1,0,0,0,0,1,0,0],[36,35,14,28,2,1,9,23,14,28,1,2,9,23,35,36],[19,35,4,21,2,21,16,20,4,21,18,2,16,20,35,16],[35,16,21,17,18,2,33,16,21,17,2,21,33,16,19,35] >;

D4.10D18 in GAP, Magma, Sage, TeX

D_4._{10}D_{18}
% in TeX

G:=Group("D4.10D18");
// GroupNames label

G:=SmallGroup(288,364);
// by ID

G=gap.SmallGroup(288,364);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^18=d^2=a^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^17>;
// generators/relations

׿
×
𝔽