Extensions 1→N→G→Q→1 with N=C3xC3:C8 and Q=C4

Direct product G=NxQ with N=C3xC3:C8 and Q=C4
dρLabelID
C12xC3:C896C12xC3:C8288,236

Semidirect products G=N:Q with N=C3xC3:C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC3:C8):1C4 = C6.18D24φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):1C4288,223
(C3xC3:C8):2C4 = C12.Dic6φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):2C4288,221
(C3xC3:C8):3C4 = C3xC6.Q16φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):3C4288,241
(C3xC3:C8):4C4 = Dic3xC3:C8φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):4C4288,200
(C3xC3:C8):5C4 = C6.(S3xC8)φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):5C4288,201
(C3xC3:C8):6C4 = C3:C8:Dic3φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):6C4288,202
(C3xC3:C8):7C4 = C2.Dic32φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):7C4288,203
(C3xC3:C8):8C4 = C3xC12.Q8φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):8C4288,242
(C3xC3:C8):9C4 = C3xC42.S3φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):9C4288,237
(C3xC3:C8):10C4 = C3xC24:C4φ: C4/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):10C4288,249
(C3xC3:C8):11C4 = Dic3xC24φ: trivial image96(C3xC3:C8):11C4288,247

Non-split extensions G=N.Q with N=C3xC3:C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC3:C8).1C4 = C12.82D12φ: C4/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).1C4288,225
(C3xC3:C8).2C4 = C3xC12.53D4φ: C4/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).2C4288,256
(C3xC3:C8).3C4 = S3xC3:C16φ: C4/C2C2 ⊆ Out C3xC3:C8964(C3xC3:C8).3C4288,189
(C3xC3:C8).4C4 = C24.61D6φ: C4/C2C2 ⊆ Out C3xC3:C8964(C3xC3:C8).4C4288,191
(C3xC3:C8).5C4 = C3xD6.C8φ: C4/C2C2 ⊆ Out C3xC3:C8962(C3xC3:C8).5C4288,232
(C3xC3:C8).6C4 = S3xC48φ: trivial image962(C3xC3:C8).6C4288,231

׿
x
:
Z
F
o
wr
Q
<