Copied to
clipboard

G = C3xC12.53D4order 288 = 25·32

Direct product of C3 and C12.53D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xC12.53D4, C62.7Q8, C3:C8.1C12, C4.13(S3xC12), C12.5(C2xC12), C12.62(C3xD4), (C2xC6).6Dic6, C12.104(C4xS3), (C3xC12).164D4, (C2xC12).315D6, C4.Dic3.2C6, (C6xC12).43C22, C32:9(C8.C4), M4(2).1(C3xS3), (C3xM4(2)).9S3, (C3xM4(2)).7C6, C12.145(C3:D4), C22.1(C3xDic6), C6.24(Dic3:C4), (C32xM4(2)).1C2, (C2xC6).(C3xQ8), C6.8(C3xC4:C4), (C3xC3:C8).2C4, (C2xC3:C8).4C6, (C6xC3:C8).15C2, C3:2(C3xC8.C4), (C2xC4).36(S3xC6), C4.28(C3xC3:D4), (C3xC6).34(C4:C4), (C3xC12).41(C2xC4), (C2xC12).13(C2xC6), C2.5(C3xDic3:C4), (C3xC4.Dic3).6C2, SmallGroup(288,256)

Series: Derived Chief Lower central Upper central

C1C12 — C3xC12.53D4
C1C3C6C12C2xC12C6xC12C6xC3:C8 — C3xC12.53D4
C3C6C12 — C3xC12.53D4
C1C12C2xC12C3xM4(2)

Generators and relations for C3xC12.53D4
 G = < a,b,c,d | a3=b12=1, c4=b6, d2=b9, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b5, dcd-1=b6c3 >

Subgroups: 122 in 70 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2xC4, C32, C12, C12, C2xC6, C2xC6, C2xC8, M4(2), M4(2), C3xC6, C3xC6, C3:C8, C3:C8, C24, C2xC12, C2xC12, C8.C4, C3xC12, C62, C2xC3:C8, C4.Dic3, C2xC24, C3xM4(2), C3xM4(2), C3xC3:C8, C3xC3:C8, C3xC24, C6xC12, C12.53D4, C3xC8.C4, C6xC3:C8, C3xC4.Dic3, C32xM4(2), C3xC12.53D4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, Q8, C12, D6, C2xC6, C4:C4, C3xS3, Dic6, C4xS3, C3:D4, C2xC12, C3xD4, C3xQ8, C8.C4, S3xC6, Dic3:C4, C3xC4:C4, C3xDic6, S3xC12, C3xC3:D4, C12.53D4, C3xC8.C4, C3xDic3:C4, C3xC12.53D4

Smallest permutation representation of C3xC12.53D4
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 4 36 7 27 10 30)(2 26 5 29 8 32 11 35)(3 31 6 34 9 25 12 28)(13 39 22 48 19 45 16 42)(14 44 23 41 20 38 17 47)(15 37 24 46 21 43 18 40)
(1 45 10 42 7 39 4 48)(2 38 11 47 8 44 5 41)(3 43 12 40 9 37 6 46)(13 36 22 33 19 30 16 27)(14 29 23 26 20 35 17 32)(15 34 24 31 21 28 18 25)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,4,36,7,27,10,30)(2,26,5,29,8,32,11,35)(3,31,6,34,9,25,12,28)(13,39,22,48,19,45,16,42)(14,44,23,41,20,38,17,47)(15,37,24,46,21,43,18,40), (1,45,10,42,7,39,4,48)(2,38,11,47,8,44,5,41)(3,43,12,40,9,37,6,46)(13,36,22,33,19,30,16,27)(14,29,23,26,20,35,17,32)(15,34,24,31,21,28,18,25)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,4,36,7,27,10,30)(2,26,5,29,8,32,11,35)(3,31,6,34,9,25,12,28)(13,39,22,48,19,45,16,42)(14,44,23,41,20,38,17,47)(15,37,24,46,21,43,18,40), (1,45,10,42,7,39,4,48)(2,38,11,47,8,44,5,41)(3,43,12,40,9,37,6,46)(13,36,22,33,19,30,16,27)(14,29,23,26,20,35,17,32)(15,34,24,31,21,28,18,25) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,4,36,7,27,10,30),(2,26,5,29,8,32,11,35),(3,31,6,34,9,25,12,28),(13,39,22,48,19,45,16,42),(14,44,23,41,20,38,17,47),(15,37,24,46,21,43,18,40)], [(1,45,10,42,7,39,4,48),(2,38,11,47,8,44,5,41),(3,43,12,40,9,37,6,46),(13,36,22,33,19,30,16,27),(14,29,23,26,20,35,17,32),(15,34,24,31,21,28,18,25)]])

72 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C6A6B6C···6G6H6I6J8A8B8C8D8E8F8G8H12A12B12C12D12E···12L12M12N12O24A···24P24Q···24X24Y24Z24AA24AB
order12233333444666···6666888888881212121212···1212121224···2424···2424242424
size11211222112112···2444446666121211112···24444···46···612121212

72 irreducible representations

dim1111111111222222222222222244
type++++++-+-
imageC1C2C2C2C3C4C6C6C6C12S3D4Q8D6C3xS3C4xS3C3:D4C3xD4Dic6C3xQ8C8.C4S3xC6S3xC12C3xC3:D4C3xDic6C3xC8.C4C12.53D4C3xC12.53D4
kernelC3xC12.53D4C6xC3:C8C3xC4.Dic3C32xM4(2)C12.53D4C3xC3:C8C2xC3:C8C4.Dic3C3xM4(2)C3:C8C3xM4(2)C3xC12C62C2xC12M4(2)C12C12C12C2xC6C2xC6C32C2xC4C4C4C22C3C3C1
# reps1111242228111122222242444824

Matrix representation of C3xC12.53D4 in GL4(F73) generated by

1000
0100
0080
0008
,
27000
02700
0080
00064
,
224500
01000
0001
0010
,
63000
271000
00072
00720
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,8,0,0,0,0,8],[27,0,0,0,0,27,0,0,0,0,8,0,0,0,0,64],[22,0,0,0,45,10,0,0,0,0,0,1,0,0,1,0],[63,27,0,0,0,10,0,0,0,0,0,72,0,0,72,0] >;

C3xC12.53D4 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{53}D_4
% in TeX

G:=Group("C3xC12.53D4");
// GroupNames label

G:=SmallGroup(288,256);
// by ID

G=gap.SmallGroup(288,256);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,168,365,92,136,1271,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=1,c^4=b^6,d^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^6*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<