Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2×A4

Direct product G=N×Q with N=Dic3 and Q=C2×A4
dρLabelID
C2×Dic3×A472C2xDic3xA4288,927

Semidirect products G=N:Q with N=Dic3 and Q=C2×A4
extensionφ:Q→Out NdρLabelID
Dic3⋊(C2×A4) = A4×C3⋊D4φ: C2×A4/A4C2 ⊆ Out Dic3366Dic3:(C2xA4)288,928
Dic32(C2×A4) = C4×S3×A4φ: trivial image366Dic3:2(C2xA4)288,919

Non-split extensions G=N.Q with N=Dic3 and Q=C2×A4
extensionφ:Q→Out NdρLabelID
Dic3.1(C2×A4) = A4×Dic6φ: C2×A4/A4C2 ⊆ Out Dic3726-Dic3.1(C2xA4)288,918
Dic3.2(C2×A4) = SL2(𝔽3).11D6φ: C2×A4/A4C2 ⊆ Out Dic3484Dic3.2(C2xA4)288,923
Dic3.3(C2×A4) = Dic6.A4φ: C2×A4/A4C2 ⊆ Out Dic3724+Dic3.3(C2xA4)288,924
Dic3.4(C2×A4) = C2×Dic3.A4φ: trivial image96Dic3.4(C2xA4)288,921
Dic3.5(C2×A4) = S3×C4.A4φ: trivial image484Dic3.5(C2xA4)288,925

׿
×
𝔽