Aliases: SL2(𝔽3).11D6, C3⋊D4.A4, Q8⋊3S3⋊C6, (C6×Q8)⋊2C6, (S3×Q8)⋊1C6, D6.1(C2×A4), Q8.7(S3×C6), C3⋊1(D4.A4), Q8.15D6⋊C3, C6.6(C22×A4), C22.5(S3×A4), Dic3.A4⋊4C2, Dic3.2(C2×A4), (C6×SL2(𝔽3))⋊5C2, (S3×SL2(𝔽3))⋊4C2, (C2×SL2(𝔽3))⋊1S3, (C3×SL2(𝔽3)).11C22, C2.7(C2×S3×A4), (C2×Q8)⋊3(C3×S3), (C2×C6).20(C2×A4), (C3×Q8).2(C2×C6), SmallGroup(288,923)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C6 — C3×Q8 — C3×SL2(𝔽3) — S3×SL2(𝔽3) — SL2(𝔽3).11D6 |
C3×Q8 — SL2(𝔽3).11D6 |
Generators and relations for SL2(𝔽3).11D6
G = < a,b,c,d,e | a4=c3=d6=1, b2=e2=a2, bab-1=a-1, cac-1=b, ad=da, ae=ea, cbc-1=ab, bd=db, be=eb, cd=dc, ce=ec, ede-1=a2d-1 >
Subgroups: 454 in 99 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, Q8, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×Q8, C2×Q8, C4○D4, C3×S3, C3×C6, SL2(𝔽3), SL2(𝔽3), Dic6, C4×S3, D12, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C3×Q8, C3×Q8, 2- 1+4, C3×Dic3, S3×C6, C62, C2×SL2(𝔽3), C2×SL2(𝔽3), C4.A4, C4○D12, S3×Q8, S3×Q8, Q8⋊3S3, Q8⋊3S3, C6×Q8, C3×SL2(𝔽3), C3×C3⋊D4, D4.A4, Q8.15D6, Dic3.A4, S3×SL2(𝔽3), C6×SL2(𝔽3), SL2(𝔽3).11D6
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, C3×S3, C2×A4, S3×C6, C22×A4, S3×A4, D4.A4, C2×S3×A4, SL2(𝔽3).11D6
(1 43 37 8)(2 44 38 9)(3 45 39 10)(4 46 40 11)(5 47 41 12)(6 48 42 7)(13 28 21 31)(14 29 22 32)(15 30 23 33)(16 25 24 34)(17 26 19 35)(18 27 20 36)
(1 21 37 13)(2 22 38 14)(3 23 39 15)(4 24 40 16)(5 19 41 17)(6 20 42 18)(7 36 48 27)(8 31 43 28)(9 32 44 29)(10 33 45 30)(11 34 46 25)(12 35 47 26)
(7 36 18)(8 31 13)(9 32 14)(10 33 15)(11 34 16)(12 35 17)(19 47 26)(20 48 27)(21 43 28)(22 44 29)(23 45 30)(24 46 25)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 43 48 8)(9 47 44 12)(10 11 45 46)(13 18 21 20)(14 19 22 17)(15 16 23 24)(25 33 34 30)(26 29 35 32)(27 31 36 28)
G:=sub<Sym(48)| (1,43,37,8)(2,44,38,9)(3,45,39,10)(4,46,40,11)(5,47,41,12)(6,48,42,7)(13,28,21,31)(14,29,22,32)(15,30,23,33)(16,25,24,34)(17,26,19,35)(18,27,20,36), (1,21,37,13)(2,22,38,14)(3,23,39,15)(4,24,40,16)(5,19,41,17)(6,20,42,18)(7,36,48,27)(8,31,43,28)(9,32,44,29)(10,33,45,30)(11,34,46,25)(12,35,47,26), (7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,47,26)(20,48,27)(21,43,28)(22,44,29)(23,45,30)(24,46,25), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,43,48,8)(9,47,44,12)(10,11,45,46)(13,18,21,20)(14,19,22,17)(15,16,23,24)(25,33,34,30)(26,29,35,32)(27,31,36,28)>;
G:=Group( (1,43,37,8)(2,44,38,9)(3,45,39,10)(4,46,40,11)(5,47,41,12)(6,48,42,7)(13,28,21,31)(14,29,22,32)(15,30,23,33)(16,25,24,34)(17,26,19,35)(18,27,20,36), (1,21,37,13)(2,22,38,14)(3,23,39,15)(4,24,40,16)(5,19,41,17)(6,20,42,18)(7,36,48,27)(8,31,43,28)(9,32,44,29)(10,33,45,30)(11,34,46,25)(12,35,47,26), (7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,47,26)(20,48,27)(21,43,28)(22,44,29)(23,45,30)(24,46,25), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,43,48,8)(9,47,44,12)(10,11,45,46)(13,18,21,20)(14,19,22,17)(15,16,23,24)(25,33,34,30)(26,29,35,32)(27,31,36,28) );
G=PermutationGroup([[(1,43,37,8),(2,44,38,9),(3,45,39,10),(4,46,40,11),(5,47,41,12),(6,48,42,7),(13,28,21,31),(14,29,22,32),(15,30,23,33),(16,25,24,34),(17,26,19,35),(18,27,20,36)], [(1,21,37,13),(2,22,38,14),(3,23,39,15),(4,24,40,16),(5,19,41,17),(6,20,42,18),(7,36,48,27),(8,31,43,28),(9,32,44,29),(10,33,45,30),(11,34,46,25),(12,35,47,26)], [(7,36,18),(8,31,13),(9,32,14),(10,33,15),(11,34,16),(12,35,17),(19,47,26),(20,48,27),(21,43,28),(22,44,29),(23,45,30),(24,46,25)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,43,48,8),(9,47,44,12),(10,11,45,46),(13,18,21,20),(14,19,22,17),(15,16,23,24),(25,33,34,30),(26,29,35,32),(27,31,36,28)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | ··· | 6M | 6N | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 2 | 6 | 18 | 2 | 4 | 4 | 8 | 8 | 6 | 6 | 6 | 18 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 24 | 24 | 12 | 12 | 24 | 24 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D6 | C3×S3 | S3×C6 | A4 | C2×A4 | C2×A4 | C2×A4 | D4.A4 | D4.A4 | SL2(𝔽3).11D6 | S3×A4 | C2×S3×A4 |
kernel | SL2(𝔽3).11D6 | Dic3.A4 | S3×SL2(𝔽3) | C6×SL2(𝔽3) | Q8.15D6 | S3×Q8 | Q8⋊3S3 | C6×Q8 | C2×SL2(𝔽3) | SL2(𝔽3) | C2×Q8 | Q8 | C3⋊D4 | Dic3 | D6 | C2×C6 | C3 | C3 | C1 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 6 | 1 | 1 |
Matrix representation of SL2(𝔽3).11D6 ►in GL4(𝔽7) generated by
1 | 5 | 0 | 2 |
0 | 0 | 4 | 3 |
6 | 6 | 4 | 2 |
6 | 1 | 4 | 2 |
3 | 6 | 6 | 3 |
4 | 0 | 4 | 5 |
5 | 5 | 4 | 4 |
2 | 5 | 6 | 0 |
2 | 3 | 1 | 4 |
2 | 5 | 3 | 2 |
5 | 5 | 4 | 4 |
6 | 1 | 4 | 2 |
2 | 6 | 4 | 4 |
5 | 6 | 5 | 3 |
2 | 5 | 3 | 3 |
1 | 1 | 3 | 6 |
3 | 0 | 1 | 2 |
6 | 0 | 1 | 1 |
2 | 5 | 5 | 3 |
1 | 1 | 3 | 6 |
G:=sub<GL(4,GF(7))| [1,0,6,6,5,0,6,1,0,4,4,4,2,3,2,2],[3,4,5,2,6,0,5,5,6,4,4,6,3,5,4,0],[2,2,5,6,3,5,5,1,1,3,4,4,4,2,4,2],[2,5,2,1,6,6,5,1,4,5,3,3,4,3,3,6],[3,6,2,1,0,0,5,1,1,1,5,3,2,1,3,6] >;
SL2(𝔽3).11D6 in GAP, Magma, Sage, TeX
{\rm SL}_2({\mathbb F}_3)._{11}D_6
% in TeX
G:=Group("SL(2,3).11D6");
// GroupNames label
G:=SmallGroup(288,923);
// by ID
G=gap.SmallGroup(288,923);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,2,-3,-2,2045,269,360,123,515,242,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^3=d^6=1,b^2=e^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,a*d=d*a,a*e=e*a,c*b*c^-1=a*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^2*d^-1>;
// generators/relations