Copied to
clipboard

G = SL2(𝔽3).11D6order 288 = 25·32

1st non-split extension by SL2(𝔽3) of D6 acting through Inn(SL2(𝔽3))

non-abelian, soluble

Aliases: SL2(𝔽3).11D6, C3⋊D4.A4, Q83S3⋊C6, (C6×Q8)⋊2C6, (S3×Q8)⋊1C6, D6.1(C2×A4), Q8.7(S3×C6), C31(D4.A4), Q8.15D6⋊C3, C6.6(C22×A4), C22.5(S3×A4), Dic3.A44C2, Dic3.2(C2×A4), (C6×SL2(𝔽3))⋊5C2, (S3×SL2(𝔽3))⋊4C2, (C2×SL2(𝔽3))⋊1S3, (C3×SL2(𝔽3)).11C22, C2.7(C2×S3×A4), (C2×Q8)⋊3(C3×S3), (C2×C6).20(C2×A4), (C3×Q8).2(C2×C6), SmallGroup(288,923)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — SL2(𝔽3).11D6
C1C2C6C3×Q8C3×SL2(𝔽3)S3×SL2(𝔽3) — SL2(𝔽3).11D6
C3×Q8 — SL2(𝔽3).11D6
C1C2C22

Generators and relations for SL2(𝔽3).11D6
 G = < a,b,c,d,e | a4=c3=d6=1, b2=e2=a2, bab-1=a-1, cac-1=b, ad=da, ae=ea, cbc-1=ab, bd=db, be=eb, cd=dc, ce=ec, ede-1=a2d-1 >

Subgroups: 454 in 99 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, Q8, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×Q8, C2×Q8, C4○D4, C3×S3, C3×C6, SL2(𝔽3), SL2(𝔽3), Dic6, C4×S3, D12, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C3×Q8, C3×Q8, 2- 1+4, C3×Dic3, S3×C6, C62, C2×SL2(𝔽3), C2×SL2(𝔽3), C4.A4, C4○D12, S3×Q8, S3×Q8, Q83S3, Q83S3, C6×Q8, C3×SL2(𝔽3), C3×C3⋊D4, D4.A4, Q8.15D6, Dic3.A4, S3×SL2(𝔽3), C6×SL2(𝔽3), SL2(𝔽3).11D6
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, C3×S3, C2×A4, S3×C6, C22×A4, S3×A4, D4.A4, C2×S3×A4, SL2(𝔽3).11D6

Smallest permutation representation of SL2(𝔽3).11D6
On 48 points
Generators in S48
(1 43 37 8)(2 44 38 9)(3 45 39 10)(4 46 40 11)(5 47 41 12)(6 48 42 7)(13 28 21 31)(14 29 22 32)(15 30 23 33)(16 25 24 34)(17 26 19 35)(18 27 20 36)
(1 21 37 13)(2 22 38 14)(3 23 39 15)(4 24 40 16)(5 19 41 17)(6 20 42 18)(7 36 48 27)(8 31 43 28)(9 32 44 29)(10 33 45 30)(11 34 46 25)(12 35 47 26)
(7 36 18)(8 31 13)(9 32 14)(10 33 15)(11 34 16)(12 35 17)(19 47 26)(20 48 27)(21 43 28)(22 44 29)(23 45 30)(24 46 25)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 43 48 8)(9 47 44 12)(10 11 45 46)(13 18 21 20)(14 19 22 17)(15 16 23 24)(25 33 34 30)(26 29 35 32)(27 31 36 28)

G:=sub<Sym(48)| (1,43,37,8)(2,44,38,9)(3,45,39,10)(4,46,40,11)(5,47,41,12)(6,48,42,7)(13,28,21,31)(14,29,22,32)(15,30,23,33)(16,25,24,34)(17,26,19,35)(18,27,20,36), (1,21,37,13)(2,22,38,14)(3,23,39,15)(4,24,40,16)(5,19,41,17)(6,20,42,18)(7,36,48,27)(8,31,43,28)(9,32,44,29)(10,33,45,30)(11,34,46,25)(12,35,47,26), (7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,47,26)(20,48,27)(21,43,28)(22,44,29)(23,45,30)(24,46,25), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,43,48,8)(9,47,44,12)(10,11,45,46)(13,18,21,20)(14,19,22,17)(15,16,23,24)(25,33,34,30)(26,29,35,32)(27,31,36,28)>;

G:=Group( (1,43,37,8)(2,44,38,9)(3,45,39,10)(4,46,40,11)(5,47,41,12)(6,48,42,7)(13,28,21,31)(14,29,22,32)(15,30,23,33)(16,25,24,34)(17,26,19,35)(18,27,20,36), (1,21,37,13)(2,22,38,14)(3,23,39,15)(4,24,40,16)(5,19,41,17)(6,20,42,18)(7,36,48,27)(8,31,43,28)(9,32,44,29)(10,33,45,30)(11,34,46,25)(12,35,47,26), (7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,47,26)(20,48,27)(21,43,28)(22,44,29)(23,45,30)(24,46,25), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,43,48,8)(9,47,44,12)(10,11,45,46)(13,18,21,20)(14,19,22,17)(15,16,23,24)(25,33,34,30)(26,29,35,32)(27,31,36,28) );

G=PermutationGroup([[(1,43,37,8),(2,44,38,9),(3,45,39,10),(4,46,40,11),(5,47,41,12),(6,48,42,7),(13,28,21,31),(14,29,22,32),(15,30,23,33),(16,25,24,34),(17,26,19,35),(18,27,20,36)], [(1,21,37,13),(2,22,38,14),(3,23,39,15),(4,24,40,16),(5,19,41,17),(6,20,42,18),(7,36,48,27),(8,31,43,28),(9,32,44,29),(10,33,45,30),(11,34,46,25),(12,35,47,26)], [(7,36,18),(8,31,13),(9,32,14),(10,33,15),(11,34,16),(12,35,17),(19,47,26),(20,48,27),(21,43,28),(22,44,29),(23,45,30),(24,46,25)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,43,48,8),(9,47,44,12),(10,11,45,46),(13,18,21,20),(14,19,22,17),(15,16,23,24),(25,33,34,30),(26,29,35,32),(27,31,36,28)]])

33 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F···6M6N6O12A12B12C12D
order12222333334444666666···66612121212
size1126182448866618222448···8242412122424

33 irreducible representations

dim111111112222333344466
type++++++++++-++
imageC1C2C2C2C3C6C6C6S3D6C3×S3S3×C6A4C2×A4C2×A4C2×A4D4.A4D4.A4SL2(𝔽3).11D6S3×A4C2×S3×A4
kernelSL2(𝔽3).11D6Dic3.A4S3×SL2(𝔽3)C6×SL2(𝔽3)Q8.15D6S3×Q8Q83S3C6×Q8C2×SL2(𝔽3)SL2(𝔽3)C2×Q8Q8C3⋊D4Dic3D6C2×C6C3C3C1C22C2
# reps111122221122111112611

Matrix representation of SL2(𝔽3).11D6 in GL4(𝔽7) generated by

1502
0043
6642
6142
,
3663
4045
5544
2560
,
2314
2532
5544
6142
,
2644
5653
2533
1136
,
3012
6011
2553
1136
G:=sub<GL(4,GF(7))| [1,0,6,6,5,0,6,1,0,4,4,4,2,3,2,2],[3,4,5,2,6,0,5,5,6,4,4,6,3,5,4,0],[2,2,5,6,3,5,5,1,1,3,4,4,4,2,4,2],[2,5,2,1,6,6,5,1,4,5,3,3,4,3,3,6],[3,6,2,1,0,0,5,1,1,1,5,3,2,1,3,6] >;

SL2(𝔽3).11D6 in GAP, Magma, Sage, TeX

{\rm SL}_2({\mathbb F}_3)._{11}D_6
% in TeX

G:=Group("SL(2,3).11D6");
// GroupNames label

G:=SmallGroup(288,923);
// by ID

G=gap.SmallGroup(288,923);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-2,2045,269,360,123,515,242,4037]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^6=1,b^2=e^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,a*d=d*a,a*e=e*a,c*b*c^-1=a*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^2*d^-1>;
// generators/relations

׿
×
𝔽