Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C3xS3

Direct product G=NxQ with N=C2xD4 and Q=C3xS3
dρLabelID
S3xC6xD448S3xC6xD4288,992

Semidirect products G=N:Q with N=C2xD4 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C2xD4):1(C3xS3) = C6xD4:S3φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4):1(C3xS3)288,702
(C2xD4):2(C3xS3) = C3xD12:6C22φ: C3xS3/C32C2 ⊆ Out C2xD4244(C2xD4):2(C3xS3)288,703
(C2xD4):3(C3xS3) = C3xC23:2D6φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4):3(C3xS3)288,708
(C2xD4):4(C3xS3) = C3xD6:3D4φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4):4(C3xS3)288,709
(C2xD4):5(C3xS3) = C3xC23.14D6φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4):5(C3xS3)288,710
(C2xD4):6(C3xS3) = C3xC12:3D4φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4):6(C3xS3)288,711
(C2xD4):7(C3xS3) = C3xD4:6D6φ: C3xS3/C32C2 ⊆ Out C2xD4244(C2xD4):7(C3xS3)288,994
(C2xD4):8(C3xS3) = C6xD4:2S3φ: trivial image48(C2xD4):8(C3xS3)288,993

Non-split extensions G=N.Q with N=C2xD4 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C2xD4).1(C3xS3) = C3xD4:Dic3φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4).1(C3xS3)288,266
(C2xD4).2(C3xS3) = C3xC12.D4φ: C3xS3/C32C2 ⊆ Out C2xD4244(C2xD4).2(C3xS3)288,267
(C2xD4).3(C3xS3) = C3xC23.7D6φ: C3xS3/C32C2 ⊆ Out C2xD4244(C2xD4).3(C3xS3)288,268
(C2xD4).4(C3xS3) = C6xD4.S3φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4).4(C3xS3)288,704
(C2xD4).5(C3xS3) = C3xC23.23D6φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4).5(C3xS3)288,706
(C2xD4).6(C3xS3) = C3xC23.12D6φ: C3xS3/C32C2 ⊆ Out C2xD448(C2xD4).6(C3xS3)288,707
(C2xD4).7(C3xS3) = C3xD4xDic3φ: trivial image48(C2xD4).7(C3xS3)288,705

׿
x
:
Z
F
o
wr
Q
<