direct product, metabelian, supersoluble, monomial
Aliases: C3×D4×Dic3, C62.199C23, C3⋊5(D4×C12), C12⋊3(C2×C12), (C3×D4)⋊3C12, (C6×D4).4C6, C4⋊1(C6×Dic3), C6.37(C6×D4), C32⋊24(C4×D4), C4⋊Dic3⋊13C6, C62⋊11(C2×C4), (C4×Dic3)⋊4C6, (C6×D4).30S3, C12⋊6(C2×Dic3), C6.197(S3×D4), (D4×C32)⋊8C4, C6.D4⋊7C6, (C2×C12).325D6, C23.27(S3×C6), C22⋊3(C6×Dic3), (Dic3×C12)⋊14C2, C6.25(C22×C12), (C22×Dic3)⋊7C6, (C22×C6).108D6, (C6×C12).120C22, (C2×C62).54C22, C6.122(D4⋊2S3), C6.45(C22×Dic3), (C6×Dic3).136C22, C2.5(C3×S3×D4), (D4×C3×C6).6C2, (C2×C6)⋊5(C2×C12), (Dic3×C2×C6)⋊8C2, (C3×C12)⋊11(C2×C4), C2.6(Dic3×C2×C6), (C2×C4).49(S3×C6), (C2×D4).7(C3×S3), (C2×C6)⋊7(C2×Dic3), C6.28(C3×C4○D4), C22.25(S3×C2×C6), (C2×C12).31(C2×C6), (C3×C4⋊Dic3)⋊22C2, C2.5(C3×D4⋊2S3), (C3×C6).225(C2×D4), (C3×C6.D4)⋊6C2, (C22×C6).28(C2×C6), (C2×C6).54(C22×C6), (C3×C6).136(C4○D4), (C2×C6).332(C22×S3), (C3×C6).116(C22×C4), (C2×Dic3).50(C2×C6), SmallGroup(288,705)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D4×Dic3
G = < a,b,c,d,e | a3=b4=c2=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 426 in 215 conjugacy classes, 102 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, C4×D4, C3×Dic3, C3×Dic3, C3×C12, C62, C62, C62, C4×Dic3, C4⋊Dic3, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×Dic3, C22×C12, C6×D4, C6×D4, C6×Dic3, C6×Dic3, C6×Dic3, C6×C12, D4×C32, C2×C62, D4×Dic3, D4×C12, Dic3×C12, C3×C4⋊Dic3, C3×C6.D4, Dic3×C2×C6, D4×C3×C6, C3×D4×Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, C23, Dic3, C12, D6, C2×C6, C22×C4, C2×D4, C4○D4, C3×S3, C2×Dic3, C2×C12, C3×D4, C22×S3, C22×C6, C4×D4, C3×Dic3, S3×C6, S3×D4, D4⋊2S3, C22×Dic3, C22×C12, C6×D4, C3×C4○D4, C6×Dic3, S3×C2×C6, D4×Dic3, D4×C12, C3×S3×D4, C3×D4⋊2S3, Dic3×C2×C6, C3×D4×Dic3
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 21 16 30)(2 22 17 25)(3 23 18 26)(4 24 13 27)(5 19 14 28)(6 20 15 29)(7 36 45 41)(8 31 46 42)(9 32 47 37)(10 33 48 38)(11 34 43 39)(12 35 44 40)
(7 45)(8 46)(9 47)(10 48)(11 43)(12 44)(19 28)(20 29)(21 30)(22 25)(23 26)(24 27)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,21,16,30)(2,22,17,25)(3,23,18,26)(4,24,13,27)(5,19,14,28)(6,20,15,29)(7,36,45,41)(8,31,46,42)(9,32,47,37)(10,33,48,38)(11,34,43,39)(12,35,44,40), (7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)>;
G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,21,16,30)(2,22,17,25)(3,23,18,26)(4,24,13,27)(5,19,14,28)(6,20,15,29)(7,36,45,41)(8,31,46,42)(9,32,47,37)(10,33,48,38)(11,34,43,39)(12,35,44,40), (7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45) );
G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,21,16,30),(2,22,17,25),(3,23,18,26),(4,24,13,27),(5,19,14,28),(6,20,15,29),(7,36,45,41),(8,31,46,42),(9,32,47,37),(10,33,48,38),(11,34,43,39),(12,35,44,40)], [(7,45),(8,46),(9,47),(10,48),(11,43),(12,44),(19,28),(20,29),(21,30),(22,25),(23,26),(24,27)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)]])
90 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 6A | ··· | 6F | 6G | ··· | 6W | 6X | ··· | 6AI | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 12M | ··· | 12R | 12S | ··· | 12AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | ··· | 4 | 6 | ··· | 6 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | - | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C6 | C6 | C12 | S3 | D4 | D6 | Dic3 | D6 | C4○D4 | C3×S3 | C3×D4 | S3×C6 | C3×Dic3 | S3×C6 | C3×C4○D4 | S3×D4 | D4⋊2S3 | C3×S3×D4 | C3×D4⋊2S3 |
kernel | C3×D4×Dic3 | Dic3×C12 | C3×C4⋊Dic3 | C3×C6.D4 | Dic3×C2×C6 | D4×C3×C6 | D4×Dic3 | D4×C32 | C4×Dic3 | C4⋊Dic3 | C6.D4 | C22×Dic3 | C6×D4 | C3×D4 | C6×D4 | C3×Dic3 | C2×C12 | C3×D4 | C22×C6 | C3×C6 | C2×D4 | Dic3 | C2×C4 | D4 | C23 | C6 | C6 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 8 | 2 | 2 | 4 | 4 | 2 | 16 | 1 | 2 | 1 | 4 | 2 | 2 | 2 | 4 | 2 | 8 | 4 | 4 | 1 | 1 | 2 | 2 |
Matrix representation of C3×D4×Dic3 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
0 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 10 | 0 |
0 | 0 | 0 | 4 |
5 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 12 | 0 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[0,12,0,0,1,0,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,10,0,0,0,0,4],[5,0,0,0,0,5,0,0,0,0,0,12,0,0,1,0] >;
C3×D4×Dic3 in GAP, Magma, Sage, TeX
C_3\times D_4\times {\rm Dic}_3
% in TeX
G:=Group("C3xD4xDic3");
// GroupNames label
G:=SmallGroup(288,705);
// by ID
G=gap.SmallGroup(288,705);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,168,555,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations