direct product, metabelian, supersoluble, monomial
Aliases: C3×D6⋊3D4, C62.203C23, D6⋊3(C3×D4), (C6×D4)⋊3C6, C12⋊2(C3×D4), (C6×D4)⋊11S3, (S3×C6)⋊13D4, (C3×C12)⋊10D4, C6.50(C6×D4), C4⋊Dic3⋊14C6, C6.199(S3×D4), C12⋊11(C3⋊D4), (C2×C12).327D6, C23.13(S3×C6), (C22×C6).32D6, C6.D4⋊11C6, C32⋊22(C4⋊D4), (C6×C12).122C22, (C2×C62).57C22, C6.125(D4⋊2S3), (C6×Dic3).101C22, (S3×C2×C4)⋊2C6, (D4×C3×C6)⋊3C2, (S3×C2×C12)⋊6C2, C4⋊2(C3×C3⋊D4), C2.26(C3×S3×D4), (C2×D4)⋊4(C3×S3), (C2×C3⋊D4)⋊5C6, C3⋊4(C3×C4⋊D4), (C6×C3⋊D4)⋊19C2, (C2×C4).51(S3×C6), C6.31(C3×C4○D4), C2.14(C6×C3⋊D4), C22.60(S3×C2×C6), (C2×C12).33(C2×C6), (C3×C4⋊Dic3)⋊23C2, (C3×C6).260(C2×D4), C6.151(C2×C3⋊D4), C2.17(C3×D4⋊2S3), (S3×C2×C6).100C22, (C2×C6).58(C22×C6), (C22×C6).31(C2×C6), (C3×C6).139(C4○D4), (C3×C6.D4)⋊27C2, (C22×S3).27(C2×C6), (C2×C6).336(C22×S3), (C2×Dic3).12(C2×C6), SmallGroup(288,709)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D6⋊3D4
G = < a,b,c,d,e | a3=b6=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b3c, ede=d-1 >
Subgroups: 522 in 215 conjugacy classes, 70 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C4⋊D4, C3×Dic3, C3×C12, S3×C6, S3×C6, C62, C62, C4⋊Dic3, C6.D4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, S3×C12, C6×Dic3, C6×Dic3, C3×C3⋊D4, C6×C12, D4×C32, S3×C2×C6, C2×C62, D6⋊3D4, C3×C4⋊D4, C3×C4⋊Dic3, C3×C6.D4, S3×C2×C12, C6×C3⋊D4, D4×C3×C6, C3×D6⋊3D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C4○D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C4⋊D4, S3×C6, S3×D4, D4⋊2S3, C2×C3⋊D4, C6×D4, C3×C4○D4, C3×C3⋊D4, S3×C2×C6, D6⋊3D4, C3×C4⋊D4, C3×S3×D4, C3×D4⋊2S3, C6×C3⋊D4, C3×D6⋊3D4
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 42)(6 41)(7 22)(8 21)(9 20)(10 19)(11 24)(12 23)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(25 47)(26 46)(27 45)(28 44)(29 43)(30 48)
(1 20 16 27)(2 21 17 28)(3 22 18 29)(4 23 13 30)(5 24 14 25)(6 19 15 26)(7 31 43 38)(8 32 44 39)(9 33 45 40)(10 34 46 41)(11 35 47 42)(12 36 48 37)
(7 46)(8 47)(9 48)(10 43)(11 44)(12 45)(19 26)(20 27)(21 28)(22 29)(23 30)(24 25)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(25,47)(26,46)(27,45)(28,44)(29,43)(30,48), (1,20,16,27)(2,21,17,28)(3,22,18,29)(4,23,13,30)(5,24,14,25)(6,19,15,26)(7,31,43,38)(8,32,44,39)(9,33,45,40)(10,34,46,41)(11,35,47,42)(12,36,48,37), (7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)>;
G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(25,47)(26,46)(27,45)(28,44)(29,43)(30,48), (1,20,16,27)(2,21,17,28)(3,22,18,29)(4,23,13,30)(5,24,14,25)(6,19,15,26)(7,31,43,38)(8,32,44,39)(9,33,45,40)(10,34,46,41)(11,35,47,42)(12,36,48,37), (7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42) );
G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,42),(6,41),(7,22),(8,21),(9,20),(10,19),(11,24),(12,23),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(25,47),(26,46),(27,45),(28,44),(29,43),(30,48)], [(1,20,16,27),(2,21,17,28),(3,22,18,29),(4,23,13,30),(5,24,14,25),(6,19,15,26),(7,31,43,38),(8,32,44,39),(9,33,45,40),(10,34,46,41),(11,35,47,42),(12,36,48,37)], [(7,46),(8,47),(9,48),(10,43),(11,44),(12,45),(19,26),(20,27),(21,28),(22,29),(23,30),(24,25),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | ··· | 6O | 6P | ··· | 6AE | 6AF | 6AG | 6AH | 6AI | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 12O | 12P | 12Q | 12R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 12 | 12 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | D4 | D4 | D6 | D6 | C4○D4 | C3×S3 | C3⋊D4 | C3×D4 | C3×D4 | S3×C6 | S3×C6 | C3×C4○D4 | C3×C3⋊D4 | S3×D4 | D4⋊2S3 | C3×S3×D4 | C3×D4⋊2S3 |
kernel | C3×D6⋊3D4 | C3×C4⋊Dic3 | C3×C6.D4 | S3×C2×C12 | C6×C3⋊D4 | D4×C3×C6 | D6⋊3D4 | C4⋊Dic3 | C6.D4 | S3×C2×C4 | C2×C3⋊D4 | C6×D4 | C6×D4 | C3×C12 | S3×C6 | C2×C12 | C22×C6 | C3×C6 | C2×D4 | C12 | C12 | D6 | C2×C4 | C23 | C6 | C4 | C6 | C6 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 4 | 4 | 8 | 1 | 1 | 2 | 2 |
Matrix representation of C3×D6⋊3D4 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 10 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 5 |
0 | 0 | 0 | 0 | 10 | 9 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,10,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,4,10,0,0,0,0,5,9],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×D6⋊3D4 in GAP, Magma, Sage, TeX
C_3\times D_6\rtimes_3D_4
% in TeX
G:=Group("C3xD6:3D4");
// GroupNames label
G:=SmallGroup(288,709);
// by ID
G=gap.SmallGroup(288,709);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,555,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^6=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,e*d*e=d^-1>;
// generators/relations