Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C2×D4

Direct product G=N×Q with N=C3⋊S3 and Q=C2×D4
dρLabelID
C2×D4×C3⋊S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=C3⋊S3 and Q=C2×D4
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C2×D4) = C22×S3≀C2φ: C2×D4/C22C22 ⊆ Out C3⋊S324C3:S3:(C2xD4)288,1031
C3⋊S32(C2×D4) = C2×D6⋊D6φ: C2×D4/C2×C4C2 ⊆ Out C3⋊S348C3:S3:2(C2xD4)288,952
C3⋊S33(C2×D4) = S32×D4φ: C2×D4/D4C2 ⊆ Out C3⋊S3248+C3:S3:3(C2xD4)288,958
C3⋊S34(C2×D4) = C2×Dic3⋊D6φ: C2×D4/C23C2 ⊆ Out C3⋊S324C3:S3:4(C2xD4)288,977

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C2×D4
extensionφ:Q→Out NdρLabelID
C3⋊S3.(C2×D4) = C2×AΓL1(𝔽9)φ: C2×D4/C2D4 ⊆ Out C3⋊S3188+C3:S3.(C2xD4)288,1027
C3⋊S3.2(C2×D4) = S32⋊D4φ: C2×D4/C4C22 ⊆ Out C3⋊S3244C3:S3.2(C2xD4)288,878
C3⋊S3.3(C2×D4) = C4⋊S3≀C2φ: C2×D4/C4C22 ⊆ Out C3⋊S3248+C3:S3.3(C2xD4)288,879
C3⋊S3.4(C2×D4) = C4⋊PSU3(𝔽2)φ: C2×D4/C4C22 ⊆ Out C3⋊S3368C3:S3.4(C2xD4)288,893
C3⋊S3.5(C2×D4) = C2×S32⋊C4φ: C2×D4/C22C22 ⊆ Out C3⋊S324C3:S3.5(C2xD4)288,880
C3⋊S3.6(C2×D4) = D6≀C2φ: C2×D4/C22C22 ⊆ Out C3⋊S3124+C3:S3.6(C2xD4)288,889
C3⋊S3.7(C2×D4) = C62⋊D4φ: C2×D4/C22C22 ⊆ Out C3⋊S3248+C3:S3.7(C2xD4)288,890
C3⋊S3.8(C2×D4) = C2×C2.PSU3(𝔽2)φ: C2×D4/C22C22 ⊆ Out C3⋊S348C3:S3.8(C2xD4)288,894
C3⋊S3.9(C2×D4) = C62⋊Q8φ: C2×D4/C22C22 ⊆ Out C3⋊S3248+C3:S3.9(C2xD4)288,895
C3⋊S3.10(C2×D4) = C2×C4⋊(C32⋊C4)φ: C2×D4/C2×C4C2 ⊆ Out C3⋊S348C3:S3.10(C2xD4)288,933
C3⋊S3.11(C2×D4) = D4×C32⋊C4φ: C2×D4/D4C2 ⊆ Out C3⋊S3248+C3:S3.11(C2xD4)288,936
C3⋊S3.12(C2×D4) = C2×C62⋊C4φ: C2×D4/C23C2 ⊆ Out C3⋊S324C3:S3.12(C2xD4)288,941

׿
×
𝔽