Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C2xD4

Direct product G=NxQ with N=C3:S3 and Q=C2xD4
dρLabelID
C2xD4xC3:S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=C3:S3 and Q=C2xD4
extensionφ:Q→Out NdρLabelID
C3:S3:(C2xD4) = C22xS3wrC2φ: C2xD4/C22C22 ⊆ Out C3:S324C3:S3:(C2xD4)288,1031
C3:S3:2(C2xD4) = C2xD6:D6φ: C2xD4/C2xC4C2 ⊆ Out C3:S348C3:S3:2(C2xD4)288,952
C3:S3:3(C2xD4) = S32xD4φ: C2xD4/D4C2 ⊆ Out C3:S3248+C3:S3:3(C2xD4)288,958
C3:S3:4(C2xD4) = C2xDic3:D6φ: C2xD4/C23C2 ⊆ Out C3:S324C3:S3:4(C2xD4)288,977

Non-split extensions G=N.Q with N=C3:S3 and Q=C2xD4
extensionφ:Q→Out NdρLabelID
C3:S3.(C2xD4) = C2xAΓL1(F9)φ: C2xD4/C2D4 ⊆ Out C3:S3188+C3:S3.(C2xD4)288,1027
C3:S3.2(C2xD4) = S32:D4φ: C2xD4/C4C22 ⊆ Out C3:S3244C3:S3.2(C2xD4)288,878
C3:S3.3(C2xD4) = C4:S3wrC2φ: C2xD4/C4C22 ⊆ Out C3:S3248+C3:S3.3(C2xD4)288,879
C3:S3.4(C2xD4) = C4:PSU3(F2)φ: C2xD4/C4C22 ⊆ Out C3:S3368C3:S3.4(C2xD4)288,893
C3:S3.5(C2xD4) = C2xS32:C4φ: C2xD4/C22C22 ⊆ Out C3:S324C3:S3.5(C2xD4)288,880
C3:S3.6(C2xD4) = D6wrC2φ: C2xD4/C22C22 ⊆ Out C3:S3124+C3:S3.6(C2xD4)288,889
C3:S3.7(C2xD4) = C62:D4φ: C2xD4/C22C22 ⊆ Out C3:S3248+C3:S3.7(C2xD4)288,890
C3:S3.8(C2xD4) = C2xC2.PSU3(F2)φ: C2xD4/C22C22 ⊆ Out C3:S348C3:S3.8(C2xD4)288,894
C3:S3.9(C2xD4) = C62:Q8φ: C2xD4/C22C22 ⊆ Out C3:S3248+C3:S3.9(C2xD4)288,895
C3:S3.10(C2xD4) = C2xC4:(C32:C4)φ: C2xD4/C2xC4C2 ⊆ Out C3:S348C3:S3.10(C2xD4)288,933
C3:S3.11(C2xD4) = D4xC32:C4φ: C2xD4/D4C2 ⊆ Out C3:S3248+C3:S3.11(C2xD4)288,936
C3:S3.12(C2xD4) = C2xC62:C4φ: C2xD4/C23C2 ⊆ Out C3:S324C3:S3.12(C2xD4)288,941

׿
x
:
Z
F
o
wr
Q
<