# Extensions 1→N→G→Q→1 with N=C23 and Q=S32

Direct product G=N×Q with N=C23 and Q=S32
dρLabelID
S32×C2348S3^2xC2^3288,1040

Semidirect products G=N:Q with N=C23 and Q=S32
extensionφ:Q→Aut NdρLabelID
C23⋊S32 = C2×S3×S4φ: S32/S3S3 ⊆ Aut C23186+C2^3:S3^2288,1028
C232S32 = C62.125C23φ: S32/C32C22 ⊆ Aut C2348C2^3:2S3^2288,631
C233S32 = C32⋊2+ 1+4φ: S32/C32C22 ⊆ Aut C23244C2^3:3S3^2288,978
C234S32 = C2×S3×C3⋊D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3:4S3^2288,976
C235S32 = C2×Dic3⋊D6φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3:5S3^2288,977

Non-split extensions G=N.Q with N=C23 and Q=S32
extensionφ:Q→Aut NdρLabelID
C23.1S32 = Dic3.S4φ: S32/S3S3 ⊆ Aut C23726-C2^3.1S3^2288,852
C23.2S32 = Dic3×S4φ: S32/S3S3 ⊆ Aut C23366-C2^3.2S3^2288,853
C23.3S32 = Dic32S4φ: S32/S3S3 ⊆ Aut C23366C2^3.3S3^2288,854
C23.4S32 = Dic3⋊S4φ: S32/S3S3 ⊆ Aut C23366C2^3.4S3^2288,855
C23.5S32 = S3×A4⋊C4φ: S32/S3S3 ⊆ Aut C23366C2^3.5S3^2288,856
C23.6S32 = D6⋊S4φ: S32/S3S3 ⊆ Aut C23366C2^3.6S3^2288,857
C23.7S32 = A4⋊D12φ: S32/S3S3 ⊆ Aut C23366+C2^3.7S3^2288,858
C23.8S32 = C62.31D4φ: S32/C32C22 ⊆ Aut C23244C2^3.8S3^2288,228
C23.9S32 = C62.32D4φ: S32/C32C22 ⊆ Aut C23244C2^3.9S3^2288,229
C23.10S32 = C62.95C23φ: S32/C32C22 ⊆ Aut C2348C2^3.10S3^2288,601
C23.11S32 = C62.98C23φ: S32/C32C22 ⊆ Aut C2348C2^3.11S3^2288,604
C23.12S32 = C62.100C23φ: S32/C32C22 ⊆ Aut C2348C2^3.12S3^2288,606
C23.13S32 = C62.101C23φ: S32/C32C22 ⊆ Aut C2348C2^3.13S3^2288,607
C23.14S32 = C62.111C23φ: S32/C32C22 ⊆ Aut C2348C2^3.14S3^2288,617
C23.15S32 = C62.112C23φ: S32/C32C22 ⊆ Aut C2348C2^3.15S3^2288,618
C23.16S32 = C62.113C23φ: S32/C32C22 ⊆ Aut C2348C2^3.16S3^2288,619
C23.17S32 = C62.117C23φ: S32/C32C22 ⊆ Aut C2348C2^3.17S3^2288,623
C23.18S32 = C62.121C23φ: S32/C32C22 ⊆ Aut C2348C2^3.18S3^2288,627
C23.19S32 = C62.94C23φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.19S3^2288,600
C23.20S32 = C62.97C23φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.20S3^2288,603
C23.21S32 = C62.56D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.21S3^2288,609
C23.22S32 = C623Q8φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.22S3^2288,612
C23.23S32 = C62.60D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.23S3^2288,614
C23.24S32 = S3×C6.D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.24S3^2288,616
C23.25S32 = Dic3×C3⋊D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.25S3^2288,620
C23.26S32 = C624D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.26S3^2288,624
C23.27S32 = C625D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.27S3^2288,625
C23.28S32 = C626D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.28S3^2288,626
C23.29S32 = C2×D6.3D6φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.29S3^2288,970
C23.30S32 = C62.99C23φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.30S3^2288,605
C23.31S32 = C62.57D4φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.31S3^2288,610
C23.32S32 = C62.115C23φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.32S3^2288,621
C23.33S32 = C62.116C23φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3.33S3^2288,622
C23.34S32 = C627D4φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.34S3^2288,628
C23.35S32 = C628D4φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3.35S3^2288,629
C23.36S32 = C624Q8φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.36S3^2288,630
C23.37S32 = C2×D6.4D6φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.37S3^2288,971
C23.38S32 = C62.6Q8central extension (φ=1)96C2^3.38S3^2288,227
C23.39S32 = C2×Dic32central extension (φ=1)96C2^3.39S3^2288,602
C23.40S32 = C2×D6⋊Dic3central extension (φ=1)96C2^3.40S3^2288,608
C23.41S32 = C2×C6.D12central extension (φ=1)48C2^3.41S3^2288,611
C23.42S32 = C2×Dic3⋊Dic3central extension (φ=1)96C2^3.42S3^2288,613
C23.43S32 = C2×C62.C22central extension (φ=1)96C2^3.43S3^2288,615
C23.44S32 = C22×S3×Dic3central extension (φ=1)96C2^3.44S3^2288,969
C23.45S32 = C22×C6.D6central extension (φ=1)48C2^3.45S3^2288,972
C23.46S32 = C22×D6⋊S3central extension (φ=1)96C2^3.46S3^2288,973
C23.47S32 = C22×C3⋊D12central extension (φ=1)48C2^3.47S3^2288,974
C23.48S32 = C22×C322Q8central extension (φ=1)96C2^3.48S3^2288,975

׿
×
𝔽