direct product, metabelian, supersoluble, monomial
Aliases: C2×S3×C3⋊D4, C62⋊2C23, C23⋊4S32, C6⋊5(S3×D4), (S3×C6)⋊19D4, (S3×C23)⋊8S3, (S3×C6)⋊4C23, D6⋊7(C22×S3), (C22×C6)⋊13D6, C32⋊7(C22×D4), (C2×Dic3)⋊15D6, (C22×S3)⋊12D6, (C3×C6).35C24, C6.35(S3×C23), C3⋊Dic3⋊2C23, (C2×C62)⋊6C22, Dic3⋊2(C22×S3), (C6×Dic3)⋊8C22, (C3×Dic3)⋊2C23, C32⋊7D4⋊9C22, D6⋊S3⋊18C22, C3⋊D12⋊17C22, (S3×Dic3)⋊10C22, C3⋊6(C2×S3×D4), C22⋊3(C2×S32), (C3×C6)⋊6(C2×D4), C6⋊2(C2×C3⋊D4), (C22×S32)⋊8C2, (C3×S3)⋊3(C2×D4), (C6×C3⋊D4)⋊6C2, (S3×C22×C6)⋊7C2, (C2×S3×Dic3)⋊6C2, (C2×S32)⋊11C22, (C2×C3⋊S3)⋊3C23, (S3×C2×C6)⋊18C22, (C2×C6)⋊8(C22×S3), C2.35(C22×S32), C3⋊2(C22×C3⋊D4), (C2×C3⋊D12)⋊21C2, (C2×D6⋊S3)⋊17C2, (C3×C3⋊D4)⋊12C22, (C2×C32⋊7D4)⋊16C2, (C22×C3⋊S3)⋊9C22, (C2×C3⋊Dic3)⋊12C22, SmallGroup(288,976)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×S3×C3⋊D4
G = < a,b,c,d,e,f | a2=b3=c2=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=fdf=d-1, fef=e-1 >
Subgroups: 1922 in 499 conjugacy classes, 132 normal (36 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×C6, C22×D4, C3×Dic3, C3⋊Dic3, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, S3×C2×C4, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, S3×C23, S3×C23, C23×C6, S3×Dic3, D6⋊S3, C3⋊D12, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, C32⋊7D4, C2×S32, C2×S32, S3×C2×C6, S3×C2×C6, S3×C2×C6, C22×C3⋊S3, C2×C62, C2×S3×D4, C22×C3⋊D4, C2×S3×Dic3, C2×D6⋊S3, C2×C3⋊D12, S3×C3⋊D4, C6×C3⋊D4, C2×C32⋊7D4, C22×S32, S3×C22×C6, C2×S3×C3⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, S32, S3×D4, C2×C3⋊D4, S3×C23, C2×S32, C2×S3×D4, C22×C3⋊D4, S3×C3⋊D4, C22×S32, C2×S3×C3⋊D4
(1 30)(2 31)(3 32)(4 29)(5 35)(6 36)(7 33)(8 34)(9 42)(10 43)(11 44)(12 41)(13 24)(14 21)(15 22)(16 23)(17 27)(18 28)(19 25)(20 26)(37 47)(38 48)(39 45)(40 46)
(1 44 45)(2 41 46)(3 42 47)(4 43 48)(5 22 26)(6 23 27)(7 24 28)(8 21 25)(9 37 32)(10 38 29)(11 39 30)(12 40 31)(13 18 33)(14 19 34)(15 20 35)(16 17 36)
(1 6)(2 7)(3 8)(4 5)(9 19)(10 20)(11 17)(12 18)(13 40)(14 37)(15 38)(16 39)(21 47)(22 48)(23 45)(24 46)(25 42)(26 43)(27 44)(28 41)(29 35)(30 36)(31 33)(32 34)
(1 45 44)(2 41 46)(3 47 42)(4 43 48)(5 26 22)(6 23 27)(7 28 24)(8 21 25)(9 32 37)(10 38 29)(11 30 39)(12 40 31)(13 33 18)(14 19 34)(15 35 20)(16 17 36)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 34)(2 33)(3 36)(4 35)(5 29)(6 32)(7 31)(8 30)(9 23)(10 22)(11 21)(12 24)(13 41)(14 44)(15 43)(16 42)(17 47)(18 46)(19 45)(20 48)(25 39)(26 38)(27 37)(28 40)
G:=sub<Sym(48)| (1,30)(2,31)(3,32)(4,29)(5,35)(6,36)(7,33)(8,34)(9,42)(10,43)(11,44)(12,41)(13,24)(14,21)(15,22)(16,23)(17,27)(18,28)(19,25)(20,26)(37,47)(38,48)(39,45)(40,46), (1,44,45)(2,41,46)(3,42,47)(4,43,48)(5,22,26)(6,23,27)(7,24,28)(8,21,25)(9,37,32)(10,38,29)(11,39,30)(12,40,31)(13,18,33)(14,19,34)(15,20,35)(16,17,36), (1,6)(2,7)(3,8)(4,5)(9,19)(10,20)(11,17)(12,18)(13,40)(14,37)(15,38)(16,39)(21,47)(22,48)(23,45)(24,46)(25,42)(26,43)(27,44)(28,41)(29,35)(30,36)(31,33)(32,34), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,32,37)(10,38,29)(11,30,39)(12,40,31)(13,33,18)(14,19,34)(15,35,20)(16,17,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,23)(10,22)(11,21)(12,24)(13,41)(14,44)(15,43)(16,42)(17,47)(18,46)(19,45)(20,48)(25,39)(26,38)(27,37)(28,40)>;
G:=Group( (1,30)(2,31)(3,32)(4,29)(5,35)(6,36)(7,33)(8,34)(9,42)(10,43)(11,44)(12,41)(13,24)(14,21)(15,22)(16,23)(17,27)(18,28)(19,25)(20,26)(37,47)(38,48)(39,45)(40,46), (1,44,45)(2,41,46)(3,42,47)(4,43,48)(5,22,26)(6,23,27)(7,24,28)(8,21,25)(9,37,32)(10,38,29)(11,39,30)(12,40,31)(13,18,33)(14,19,34)(15,20,35)(16,17,36), (1,6)(2,7)(3,8)(4,5)(9,19)(10,20)(11,17)(12,18)(13,40)(14,37)(15,38)(16,39)(21,47)(22,48)(23,45)(24,46)(25,42)(26,43)(27,44)(28,41)(29,35)(30,36)(31,33)(32,34), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,32,37)(10,38,29)(11,30,39)(12,40,31)(13,33,18)(14,19,34)(15,35,20)(16,17,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,23)(10,22)(11,21)(12,24)(13,41)(14,44)(15,43)(16,42)(17,47)(18,46)(19,45)(20,48)(25,39)(26,38)(27,37)(28,40) );
G=PermutationGroup([[(1,30),(2,31),(3,32),(4,29),(5,35),(6,36),(7,33),(8,34),(9,42),(10,43),(11,44),(12,41),(13,24),(14,21),(15,22),(16,23),(17,27),(18,28),(19,25),(20,26),(37,47),(38,48),(39,45),(40,46)], [(1,44,45),(2,41,46),(3,42,47),(4,43,48),(5,22,26),(6,23,27),(7,24,28),(8,21,25),(9,37,32),(10,38,29),(11,39,30),(12,40,31),(13,18,33),(14,19,34),(15,20,35),(16,17,36)], [(1,6),(2,7),(3,8),(4,5),(9,19),(10,20),(11,17),(12,18),(13,40),(14,37),(15,38),(16,39),(21,47),(22,48),(23,45),(24,46),(25,42),(26,43),(27,44),(28,41),(29,35),(30,36),(31,33),(32,34)], [(1,45,44),(2,41,46),(3,47,42),(4,43,48),(5,26,22),(6,23,27),(7,28,24),(8,21,25),(9,32,37),(10,38,29),(11,30,39),(12,40,31),(13,33,18),(14,19,34),(15,35,20),(16,17,36)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,34),(2,33),(3,36),(4,35),(5,29),(6,32),(7,31),(8,30),(9,23),(10,22),(11,21),(12,24),(13,41),(14,44),(15,43),(16,42),(17,47),(18,46),(19,45),(20,48),(25,39),(26,38),(27,37),(28,40)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | ··· | 6J | 6K | ··· | 6S | 6T | ··· | 6AA | 6AB | 6AC | 12A | 12B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D6 | D6 | C3⋊D4 | S32 | S3×D4 | C2×S32 | S3×C3⋊D4 |
kernel | C2×S3×C3⋊D4 | C2×S3×Dic3 | C2×D6⋊S3 | C2×C3⋊D12 | S3×C3⋊D4 | C6×C3⋊D4 | C2×C32⋊7D4 | C22×S32 | S3×C22×C6 | C2×C3⋊D4 | S3×C23 | S3×C6 | C2×Dic3 | C3⋊D4 | C22×S3 | C22×C6 | D6 | C23 | C6 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 4 | 7 | 2 | 8 | 1 | 2 | 3 | 4 |
Matrix representation of C2×S3×C3⋊D4 ►in GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0] >;
C2×S3×C3⋊D4 in GAP, Magma, Sage, TeX
C_2\times S_3\times C_3\rtimes D_4
% in TeX
G:=Group("C2xS3xC3:D4");
// GroupNames label
G:=SmallGroup(288,976);
// by ID
G=gap.SmallGroup(288,976);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,346,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations