Copied to
clipboard

G = Dic3:S4order 288 = 25·32

The semidirect product of Dic3 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: Dic3:S4, (C2xC6):D12, C3:2(C4:S4), (C2xS4):1S3, (C6xS4):2C2, (C3xA4):1D4, C23.4S32, C6.12(C2xS4), C2.13(S3xS4), (C2xA4).4D6, A4:1(C3:D4), (Dic3xA4):1C2, (C22xC6).4D6, (C6xA4).4C22, (C22xDic3):3S3, C22:1(C3:D12), (C2xC3:S4):1C2, SmallGroup(288,855)

Series: Derived Chief Lower central Upper central

C1C22C6xA4 — Dic3:S4
C1C22C2xC6C3xA4C6xA4Dic3xA4 — Dic3:S4
C3xA4C6xA4 — Dic3:S4
C1C2

Generators and relations for Dic3:S4
 G = < a,b,c,d,e,f | a6=c2=d2=e3=f2=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a3b, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 786 in 122 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, Dic3, C12, A4, A4, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, D12, C2xDic3, C3:D4, C2xC12, C3xD4, S4, C2xA4, C2xA4, C22xS3, C22xC6, C22xC6, C4:D4, C3xDic3, C3xA4, S3xC6, C2xC3:S3, Dic3:C4, D6:C4, C6.D4, C4xA4, C22xDic3, C2xC3:D4, C6xD4, C2xS4, C2xS4, C3:D12, C3xS4, C3:S4, C6xA4, C23.14D6, C4:S4, Dic3xA4, C6xS4, C2xC3:S4, Dic3:S4
Quotients: C1, C2, C22, S3, D4, D6, D12, C3:D4, S4, S32, C2xS4, C3:D12, C4:S4, S3xS4, Dic3:S4

Character table of Dic3:S4

 class 12A2B2C2D2E3A3B3C4A4B4C4D6A6B6C6D6E6F6G12A12B12C12D
 size 1133123628166121836266812121612122424
ρ1111111111111111111111111    trivial
ρ21111-11111-1-1-111111-1-11-1-1-1-1    linear of order 2
ρ311111-1111-11-1-1111111111-1-1    linear of order 2
ρ41111-1-11111-11-11111-1-11-1-111    linear of order 2
ρ52222-20-12-10-200-1-1-1211-11100    orthogonal lifted from D6
ρ62-22-2002220000-22-2-200-20000    orthogonal lifted from D4
ρ72222002-1-12020222-100-100-1-1    orthogonal lifted from S3
ρ82222002-1-1-20-20222-100-10011    orthogonal lifted from D6
ρ9222220-12-10200-1-1-12-1-1-1-1-100    orthogonal lifted from S3
ρ102-22-2002-1-10000-22-2100100-33    orthogonal lifted from D12
ρ112-22-2002-1-10000-22-21001003-3    orthogonal lifted from D12
ρ122-22-200-12-100001-11-2-3--31-3--300    complex lifted from C3:D4
ρ132-22-200-12-100001-11-2--3-31--3-300    complex lifted from C3:D4
ρ1433-1-11-1300-3-1113-1-10110-1-100    orthogonal lifted from C2xS4
ρ1533-1-1113003-1-1-13-1-10110-1-100    orthogonal lifted from S4
ρ1633-1-1-11300-311-13-1-10-1-101100    orthogonal lifted from C2xS4
ρ1733-1-1-1-130031-113-1-10-1-101100    orthogonal lifted from S4
ρ184-44-400-2-2100002-22200-10000    orthogonal lifted from C3:D12
ρ19444400-2-210000-2-2-2-20010000    orthogonal lifted from S32
ρ2066-2-220-3000-200-3110-1-101100    orthogonal lifted from S3xS4
ρ2166-2-2-20-3000200-3110110-1-100    orthogonal lifted from S3xS4
ρ226-6-22006000000-6-2200000000    orthogonal lifted from C4:S4
ρ236-6-2200-300000031-10--3-30-3--300    complex faithful
ρ246-6-2200-300000031-10-3--30--3-300    complex faithful

Smallest permutation representation of Dic3:S4
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 23 4 20)(2 22 5 19)(3 21 6 24)(7 33 10 36)(8 32 11 35)(9 31 12 34)(13 27 16 30)(14 26 17 29)(15 25 18 28)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(31 34)(32 35)(33 36)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 11 17)(2 12 18)(3 7 13)(4 8 14)(5 9 15)(6 10 16)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)
(1 23)(2 24)(3 19)(4 20)(5 21)(6 22)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,23,4,20)(2,22,5,19)(3,21,6,24)(7,33,10,36)(8,32,11,35)(9,31,12,34)(13,27,16,30)(14,26,17,29)(15,25,18,28), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,11,17)(2,12,18)(3,7,13)(4,8,14)(5,9,15)(6,10,16)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,23,4,20)(2,22,5,19)(3,21,6,24)(7,33,10,36)(8,32,11,35)(9,31,12,34)(13,27,16,30)(14,26,17,29)(15,25,18,28), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,11,17)(2,12,18)(3,7,13)(4,8,14)(5,9,15)(6,10,16)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,23,4,20),(2,22,5,19),(3,21,6,24),(7,33,10,36),(8,32,11,35),(9,31,12,34),(13,27,16,30),(14,26,17,29),(15,25,18,28)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(31,34),(32,35),(33,36)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,11,17),(2,12,18),(3,7,13),(4,8,14),(5,9,15),(6,10,16),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)], [(1,23),(2,24),(3,19),(4,20),(5,21),(6,22),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)]])

Matrix representation of Dic3:S4 in GL5(F13)

710000
107000
00100
00010
00001
,
37000
610000
001200
000120
000012
,
10000
01000
00010
00100
00121212
,
10000
01000
00121212
00001
00010
,
10000
01000
00100
00001
00121212
,
012000
120000
00100
00001
00010

G:=sub<GL(5,GF(13))| [7,10,0,0,0,10,7,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[3,6,0,0,0,7,10,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,1,0,12,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,12,0,1,0,0,12,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,12,0,0,0,0,12,0,0,0,1,12],[0,12,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

Dic3:S4 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes S_4
% in TeX

G:=Group("Dic3:S4");
// GroupNames label

G:=SmallGroup(288,855);
// by ID

G=gap.SmallGroup(288,855);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,28,85,234,1684,3036,782,1777,1350]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^6=c^2=d^2=e^3=f^2=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^3*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of Dic3:S4 in TeX

׿
x
:
Z
F
o
wr
Q
<