Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C3xC6

Direct product G=NxQ with N=C2xD4 and Q=C3xC6
dρLabelID
D4xC62144D4xC6^2288,1019

Semidirect products G=N:Q with N=C2xD4 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C2xD4):1(C3xC6) = C32xC22wrC2φ: C3xC6/C32C2 ⊆ Out C2xD472(C2xD4):1(C3xC6)288,817
(C2xD4):2(C3xC6) = C32xC4:D4φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4):2(C3xC6)288,818
(C2xD4):3(C3xC6) = C32xC4:1D4φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4):3(C3xC6)288,824
(C2xD4):4(C3xC6) = D8xC3xC6φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4):4(C3xC6)288,829
(C2xD4):5(C3xC6) = C32xC8:C22φ: C3xC6/C32C2 ⊆ Out C2xD472(C2xD4):5(C3xC6)288,833
(C2xD4):6(C3xC6) = C32x2+ 1+4φ: C3xC6/C32C2 ⊆ Out C2xD472(C2xD4):6(C3xC6)288,1022
(C2xD4):7(C3xC6) = C4oD4xC3xC6φ: trivial image144(C2xD4):7(C3xC6)288,1021

Non-split extensions G=N.Q with N=C2xD4 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
(C2xD4).1(C3xC6) = C32xC23:C4φ: C3xC6/C32C2 ⊆ Out C2xD472(C2xD4).1(C3xC6)288,317
(C2xD4).2(C3xC6) = C32xC4.D4φ: C3xC6/C32C2 ⊆ Out C2xD472(C2xD4).2(C3xC6)288,318
(C2xD4).3(C3xC6) = C32xD4:C4φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4).3(C3xC6)288,320
(C2xD4).4(C3xC6) = C32xC22.D4φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4).4(C3xC6)288,820
(C2xD4).5(C3xC6) = C32xC4.4D4φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4).5(C3xC6)288,821
(C2xD4).6(C3xC6) = SD16xC3xC6φ: C3xC6/C32C2 ⊆ Out C2xD4144(C2xD4).6(C3xC6)288,830
(C2xD4).7(C3xC6) = D4xC3xC12φ: trivial image144(C2xD4).7(C3xC6)288,815

׿
x
:
Z
F
o
wr
Q
<