Copied to
clipboard

G = SD16×C3×C6order 288 = 25·32

Direct product of C3×C6 and SD16

direct product, metabelian, nilpotent (class 3), monomial

Aliases: SD16×C3×C6, C83C62, Q82C62, D4.1C62, C62.145D4, (C2×C24)⋊13C6, (C6×C24)⋊21C2, C2413(C2×C6), (C6×Q8)⋊14C6, C6.92(C6×D4), (C6×D4).25C6, C12.51(C3×D4), C4.2(C2×C62), C4.7(D4×C32), (C3×C24)⋊33C22, (C3×C12).148D4, (C2×C4).26C62, C12.56(C22×C6), (C6×C12).375C22, (C3×C12).186C23, (Q8×C32)⋊25C22, C22.15(D4×C32), (D4×C32).32C22, (C2×C8)⋊5(C3×C6), (Q8×C3×C6)⋊17C2, C2.12(D4×C3×C6), (C2×Q8)⋊5(C3×C6), (D4×C3×C6).20C2, (C3×Q8)⋊11(C2×C6), (C2×D4).6(C3×C6), (C2×C6).73(C3×D4), (C3×D4).16(C2×C6), (C3×C6).309(C2×D4), (C2×C12).162(C2×C6), SmallGroup(288,830)

Series: Derived Chief Lower central Upper central

C1C4 — SD16×C3×C6
C1C2C4C12C3×C12Q8×C32C32×SD16 — SD16×C3×C6
C1C2C4 — SD16×C3×C6
C1C62C6×C12 — SD16×C3×C6

Generators and relations for SD16×C3×C6
 G = < a,b,c,d | a3=b6=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 324 in 204 conjugacy classes, 132 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C32, C12, C12, C2×C6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3×C6, C3×C6, C3×C6, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C2×SD16, C3×C12, C3×C12, C62, C62, C2×C24, C3×SD16, C6×D4, C6×Q8, C3×C24, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, Q8×C32, C2×C62, C6×SD16, C6×C24, C32×SD16, D4×C3×C6, Q8×C3×C6, SD16×C3×C6
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, SD16, C2×D4, C3×C6, C3×D4, C22×C6, C2×SD16, C62, C3×SD16, C6×D4, D4×C32, C2×C62, C6×SD16, C32×SD16, D4×C3×C6, SD16×C3×C6

Smallest permutation representation of SD16×C3×C6
On 144 points
Generators in S144
(1 99 91)(2 100 92)(3 101 93)(4 102 94)(5 103 95)(6 104 96)(7 97 89)(8 98 90)(9 111 135)(10 112 136)(11 105 129)(12 106 130)(13 107 131)(14 108 132)(15 109 133)(16 110 134)(17 122 114)(18 123 115)(19 124 116)(20 125 117)(21 126 118)(22 127 119)(23 128 120)(24 121 113)(25 49 41)(26 50 42)(27 51 43)(28 52 44)(29 53 45)(30 54 46)(31 55 47)(32 56 48)(33 138 82)(34 139 83)(35 140 84)(36 141 85)(37 142 86)(38 143 87)(39 144 88)(40 137 81)(57 77 65)(58 78 66)(59 79 67)(60 80 68)(61 73 69)(62 74 70)(63 75 71)(64 76 72)
(1 38 18 62 42 135)(2 39 19 63 43 136)(3 40 20 64 44 129)(4 33 21 57 45 130)(5 34 22 58 46 131)(6 35 23 59 47 132)(7 36 24 60 48 133)(8 37 17 61 41 134)(9 99 143 123 74 26)(10 100 144 124 75 27)(11 101 137 125 76 28)(12 102 138 126 77 29)(13 103 139 127 78 30)(14 104 140 128 79 31)(15 97 141 121 80 32)(16 98 142 122 73 25)(49 110 90 86 114 69)(50 111 91 87 115 70)(51 112 92 88 116 71)(52 105 93 81 117 72)(53 106 94 82 118 65)(54 107 95 83 119 66)(55 108 96 84 120 67)(56 109 89 85 113 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 58)(2 61)(3 64)(4 59)(5 62)(6 57)(7 60)(8 63)(9 127)(10 122)(11 125)(12 128)(13 123)(14 126)(15 121)(16 124)(17 136)(18 131)(19 134)(20 129)(21 132)(22 135)(23 130)(24 133)(25 144)(26 139)(27 142)(28 137)(29 140)(30 143)(31 138)(32 141)(33 47)(34 42)(35 45)(36 48)(37 43)(38 46)(39 41)(40 44)(49 88)(50 83)(51 86)(52 81)(53 84)(54 87)(55 82)(56 85)(65 96)(66 91)(67 94)(68 89)(69 92)(70 95)(71 90)(72 93)(73 100)(74 103)(75 98)(76 101)(77 104)(78 99)(79 102)(80 97)(105 117)(106 120)(107 115)(108 118)(109 113)(110 116)(111 119)(112 114)

G:=sub<Sym(144)| (1,99,91)(2,100,92)(3,101,93)(4,102,94)(5,103,95)(6,104,96)(7,97,89)(8,98,90)(9,111,135)(10,112,136)(11,105,129)(12,106,130)(13,107,131)(14,108,132)(15,109,133)(16,110,134)(17,122,114)(18,123,115)(19,124,116)(20,125,117)(21,126,118)(22,127,119)(23,128,120)(24,121,113)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,138,82)(34,139,83)(35,140,84)(36,141,85)(37,142,86)(38,143,87)(39,144,88)(40,137,81)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,38,18,62,42,135)(2,39,19,63,43,136)(3,40,20,64,44,129)(4,33,21,57,45,130)(5,34,22,58,46,131)(6,35,23,59,47,132)(7,36,24,60,48,133)(8,37,17,61,41,134)(9,99,143,123,74,26)(10,100,144,124,75,27)(11,101,137,125,76,28)(12,102,138,126,77,29)(13,103,139,127,78,30)(14,104,140,128,79,31)(15,97,141,121,80,32)(16,98,142,122,73,25)(49,110,90,86,114,69)(50,111,91,87,115,70)(51,112,92,88,116,71)(52,105,93,81,117,72)(53,106,94,82,118,65)(54,107,95,83,119,66)(55,108,96,84,120,67)(56,109,89,85,113,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,58)(2,61)(3,64)(4,59)(5,62)(6,57)(7,60)(8,63)(9,127)(10,122)(11,125)(12,128)(13,123)(14,126)(15,121)(16,124)(17,136)(18,131)(19,134)(20,129)(21,132)(22,135)(23,130)(24,133)(25,144)(26,139)(27,142)(28,137)(29,140)(30,143)(31,138)(32,141)(33,47)(34,42)(35,45)(36,48)(37,43)(38,46)(39,41)(40,44)(49,88)(50,83)(51,86)(52,81)(53,84)(54,87)(55,82)(56,85)(65,96)(66,91)(67,94)(68,89)(69,92)(70,95)(71,90)(72,93)(73,100)(74,103)(75,98)(76,101)(77,104)(78,99)(79,102)(80,97)(105,117)(106,120)(107,115)(108,118)(109,113)(110,116)(111,119)(112,114)>;

G:=Group( (1,99,91)(2,100,92)(3,101,93)(4,102,94)(5,103,95)(6,104,96)(7,97,89)(8,98,90)(9,111,135)(10,112,136)(11,105,129)(12,106,130)(13,107,131)(14,108,132)(15,109,133)(16,110,134)(17,122,114)(18,123,115)(19,124,116)(20,125,117)(21,126,118)(22,127,119)(23,128,120)(24,121,113)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,138,82)(34,139,83)(35,140,84)(36,141,85)(37,142,86)(38,143,87)(39,144,88)(40,137,81)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,38,18,62,42,135)(2,39,19,63,43,136)(3,40,20,64,44,129)(4,33,21,57,45,130)(5,34,22,58,46,131)(6,35,23,59,47,132)(7,36,24,60,48,133)(8,37,17,61,41,134)(9,99,143,123,74,26)(10,100,144,124,75,27)(11,101,137,125,76,28)(12,102,138,126,77,29)(13,103,139,127,78,30)(14,104,140,128,79,31)(15,97,141,121,80,32)(16,98,142,122,73,25)(49,110,90,86,114,69)(50,111,91,87,115,70)(51,112,92,88,116,71)(52,105,93,81,117,72)(53,106,94,82,118,65)(54,107,95,83,119,66)(55,108,96,84,120,67)(56,109,89,85,113,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,58)(2,61)(3,64)(4,59)(5,62)(6,57)(7,60)(8,63)(9,127)(10,122)(11,125)(12,128)(13,123)(14,126)(15,121)(16,124)(17,136)(18,131)(19,134)(20,129)(21,132)(22,135)(23,130)(24,133)(25,144)(26,139)(27,142)(28,137)(29,140)(30,143)(31,138)(32,141)(33,47)(34,42)(35,45)(36,48)(37,43)(38,46)(39,41)(40,44)(49,88)(50,83)(51,86)(52,81)(53,84)(54,87)(55,82)(56,85)(65,96)(66,91)(67,94)(68,89)(69,92)(70,95)(71,90)(72,93)(73,100)(74,103)(75,98)(76,101)(77,104)(78,99)(79,102)(80,97)(105,117)(106,120)(107,115)(108,118)(109,113)(110,116)(111,119)(112,114) );

G=PermutationGroup([[(1,99,91),(2,100,92),(3,101,93),(4,102,94),(5,103,95),(6,104,96),(7,97,89),(8,98,90),(9,111,135),(10,112,136),(11,105,129),(12,106,130),(13,107,131),(14,108,132),(15,109,133),(16,110,134),(17,122,114),(18,123,115),(19,124,116),(20,125,117),(21,126,118),(22,127,119),(23,128,120),(24,121,113),(25,49,41),(26,50,42),(27,51,43),(28,52,44),(29,53,45),(30,54,46),(31,55,47),(32,56,48),(33,138,82),(34,139,83),(35,140,84),(36,141,85),(37,142,86),(38,143,87),(39,144,88),(40,137,81),(57,77,65),(58,78,66),(59,79,67),(60,80,68),(61,73,69),(62,74,70),(63,75,71),(64,76,72)], [(1,38,18,62,42,135),(2,39,19,63,43,136),(3,40,20,64,44,129),(4,33,21,57,45,130),(5,34,22,58,46,131),(6,35,23,59,47,132),(7,36,24,60,48,133),(8,37,17,61,41,134),(9,99,143,123,74,26),(10,100,144,124,75,27),(11,101,137,125,76,28),(12,102,138,126,77,29),(13,103,139,127,78,30),(14,104,140,128,79,31),(15,97,141,121,80,32),(16,98,142,122,73,25),(49,110,90,86,114,69),(50,111,91,87,115,70),(51,112,92,88,116,71),(52,105,93,81,117,72),(53,106,94,82,118,65),(54,107,95,83,119,66),(55,108,96,84,120,67),(56,109,89,85,113,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,58),(2,61),(3,64),(4,59),(5,62),(6,57),(7,60),(8,63),(9,127),(10,122),(11,125),(12,128),(13,123),(14,126),(15,121),(16,124),(17,136),(18,131),(19,134),(20,129),(21,132),(22,135),(23,130),(24,133),(25,144),(26,139),(27,142),(28,137),(29,140),(30,143),(31,138),(32,141),(33,47),(34,42),(35,45),(36,48),(37,43),(38,46),(39,41),(40,44),(49,88),(50,83),(51,86),(52,81),(53,84),(54,87),(55,82),(56,85),(65,96),(66,91),(67,94),(68,89),(69,92),(70,95),(71,90),(72,93),(73,100),(74,103),(75,98),(76,101),(77,104),(78,99),(79,102),(80,97),(105,117),(106,120),(107,115),(108,118),(109,113),(110,116),(111,119),(112,114)]])

126 conjugacy classes

class 1 2A2B2C2D2E3A···3H4A4B4C4D6A···6X6Y···6AN8A8B8C8D12A···12P12Q···12AF24A···24AF
order1222223···344446···66···6888812···1212···1224···24
size1111441···122441···14···422222···24···42···2

126 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C3C6C6C6C6D4D4SD16C3×D4C3×D4C3×SD16
kernelSD16×C3×C6C6×C24C32×SD16D4×C3×C6Q8×C3×C6C6×SD16C2×C24C3×SD16C6×D4C6×Q8C3×C12C62C3×C6C12C2×C6C6
# reps114118832881148832

Matrix representation of SD16×C3×C6 in GL5(𝔽73)

80000
01000
00100
00010
00001
,
10000
09000
00900
000720
000072
,
720000
00100
072000
000667
00066
,
720000
072000
00100
00010
000072

G:=sub<GL(5,GF(73))| [8,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,1,0,0,0,0,0,0,6,6,0,0,0,67,6],[72,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72] >;

SD16×C3×C6 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times C_3\times C_6
% in TeX

G:=Group("SD16xC3xC6");
// GroupNames label

G:=SmallGroup(288,830);
// by ID

G=gap.SmallGroup(288,830);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1008,1037,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^6=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽