Copied to
clipboard

G = D4×C3×C12order 288 = 25·32

Direct product of C3×C12 and D4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: D4×C3×C12, C12218C2, C23.11C62, C62.287C23, C41(C6×C12), (C4×C12)⋊17C6, C126(C2×C12), C427(C3×C6), C6.83(C6×D4), C6217(C2×C4), C222(C6×C12), (C22×C12)⋊8C6, (C6×D4).29C6, (C2×C4).20C62, C6.39(C22×C12), C22.7(C2×C62), (C6×C12).368C22, (C2×C62).87C22, (C2×C6×C12)⋊6C2, C4⋊C47(C3×C6), C2.3(D4×C3×C6), C2.4(C2×C6×C12), (C3×C4⋊C4)⋊16C6, (C2×C6)⋊7(C2×C12), (D4×C3×C6).21C2, (C3×C12)⋊21(C2×C4), C22⋊C46(C3×C6), (C22×C4)⋊4(C3×C6), (C2×D4).7(C3×C6), C6.49(C3×C4○D4), (C32×C4⋊C4)⋊25C2, (C3×C22⋊C4)⋊14C6, (C2×C12).95(C2×C6), (C3×C6).300(C2×D4), C2.2(C32×C4○D4), (C2×C6).93(C22×C6), (C22×C6).52(C2×C6), (C3×C6).166(C4○D4), (C32×C22⋊C4)⋊22C2, (C3×C6).131(C22×C4), SmallGroup(288,815)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C3×C12
C1C2C22C2×C6C62C6×C12C32×C22⋊C4 — D4×C3×C12
C1C2 — D4×C3×C12
C1C6×C12 — D4×C3×C12

Generators and relations for D4×C3×C12
 G = < a,b,c,d | a3=b12=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 372 in 282 conjugacy classes, 192 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C32, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×C6, C3×C6, C2×C12, C2×C12, C3×D4, C22×C6, C4×D4, C3×C12, C3×C12, C62, C62, C62, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C6×C12, C6×C12, C6×C12, D4×C32, C2×C62, D4×C12, C122, C32×C22⋊C4, C32×C4⋊C4, C2×C6×C12, D4×C3×C6, D4×C3×C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C32, C12, C2×C6, C22×C4, C2×D4, C4○D4, C3×C6, C2×C12, C3×D4, C22×C6, C4×D4, C3×C12, C62, C22×C12, C6×D4, C3×C4○D4, C6×C12, D4×C32, C2×C62, D4×C12, C2×C6×C12, D4×C3×C6, C32×C4○D4, D4×C3×C12

Smallest permutation representation of D4×C3×C12
On 144 points
Generators in S144
(1 130 119)(2 131 120)(3 132 109)(4 121 110)(5 122 111)(6 123 112)(7 124 113)(8 125 114)(9 126 115)(10 127 116)(11 128 117)(12 129 118)(13 97 51)(14 98 52)(15 99 53)(16 100 54)(17 101 55)(18 102 56)(19 103 57)(20 104 58)(21 105 59)(22 106 60)(23 107 49)(24 108 50)(25 144 80)(26 133 81)(27 134 82)(28 135 83)(29 136 84)(30 137 73)(31 138 74)(32 139 75)(33 140 76)(34 141 77)(35 142 78)(36 143 79)(37 92 70)(38 93 71)(39 94 72)(40 95 61)(41 96 62)(42 85 63)(43 86 64)(44 87 65)(45 88 66)(46 89 67)(47 90 68)(48 91 69)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 87 82 97)(2 88 83 98)(3 89 84 99)(4 90 73 100)(5 91 74 101)(6 92 75 102)(7 93 76 103)(8 94 77 104)(9 95 78 105)(10 96 79 106)(11 85 80 107)(12 86 81 108)(13 119 44 134)(14 120 45 135)(15 109 46 136)(16 110 47 137)(17 111 48 138)(18 112 37 139)(19 113 38 140)(20 114 39 141)(21 115 40 142)(22 116 41 143)(23 117 42 144)(24 118 43 133)(25 49 128 63)(26 50 129 64)(27 51 130 65)(28 52 131 66)(29 53 132 67)(30 54 121 68)(31 55 122 69)(32 56 123 70)(33 57 124 71)(34 58 125 72)(35 59 126 61)(36 60 127 62)
(1 103)(2 104)(3 105)(4 106)(5 107)(6 108)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 109)(22 110)(23 111)(24 112)(25 69)(26 70)(27 71)(28 72)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 121)(73 96)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 91)(81 92)(82 93)(83 94)(84 95)

G:=sub<Sym(144)| (1,130,119)(2,131,120)(3,132,109)(4,121,110)(5,122,111)(6,123,112)(7,124,113)(8,125,114)(9,126,115)(10,127,116)(11,128,117)(12,129,118)(13,97,51)(14,98,52)(15,99,53)(16,100,54)(17,101,55)(18,102,56)(19,103,57)(20,104,58)(21,105,59)(22,106,60)(23,107,49)(24,108,50)(25,144,80)(26,133,81)(27,134,82)(28,135,83)(29,136,84)(30,137,73)(31,138,74)(32,139,75)(33,140,76)(34,141,77)(35,142,78)(36,143,79)(37,92,70)(38,93,71)(39,94,72)(40,95,61)(41,96,62)(42,85,63)(43,86,64)(44,87,65)(45,88,66)(46,89,67)(47,90,68)(48,91,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,87,82,97)(2,88,83,98)(3,89,84,99)(4,90,73,100)(5,91,74,101)(6,92,75,102)(7,93,76,103)(8,94,77,104)(9,95,78,105)(10,96,79,106)(11,85,80,107)(12,86,81,108)(13,119,44,134)(14,120,45,135)(15,109,46,136)(16,110,47,137)(17,111,48,138)(18,112,37,139)(19,113,38,140)(20,114,39,141)(21,115,40,142)(22,116,41,143)(23,117,42,144)(24,118,43,133)(25,49,128,63)(26,50,129,64)(27,51,130,65)(28,52,131,66)(29,53,132,67)(30,54,121,68)(31,55,122,69)(32,56,123,70)(33,57,124,71)(34,58,125,72)(35,59,126,61)(36,60,127,62), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,109)(22,110)(23,111)(24,112)(25,69)(26,70)(27,71)(28,72)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(73,96)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)>;

G:=Group( (1,130,119)(2,131,120)(3,132,109)(4,121,110)(5,122,111)(6,123,112)(7,124,113)(8,125,114)(9,126,115)(10,127,116)(11,128,117)(12,129,118)(13,97,51)(14,98,52)(15,99,53)(16,100,54)(17,101,55)(18,102,56)(19,103,57)(20,104,58)(21,105,59)(22,106,60)(23,107,49)(24,108,50)(25,144,80)(26,133,81)(27,134,82)(28,135,83)(29,136,84)(30,137,73)(31,138,74)(32,139,75)(33,140,76)(34,141,77)(35,142,78)(36,143,79)(37,92,70)(38,93,71)(39,94,72)(40,95,61)(41,96,62)(42,85,63)(43,86,64)(44,87,65)(45,88,66)(46,89,67)(47,90,68)(48,91,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,87,82,97)(2,88,83,98)(3,89,84,99)(4,90,73,100)(5,91,74,101)(6,92,75,102)(7,93,76,103)(8,94,77,104)(9,95,78,105)(10,96,79,106)(11,85,80,107)(12,86,81,108)(13,119,44,134)(14,120,45,135)(15,109,46,136)(16,110,47,137)(17,111,48,138)(18,112,37,139)(19,113,38,140)(20,114,39,141)(21,115,40,142)(22,116,41,143)(23,117,42,144)(24,118,43,133)(25,49,128,63)(26,50,129,64)(27,51,130,65)(28,52,131,66)(29,53,132,67)(30,54,121,68)(31,55,122,69)(32,56,123,70)(33,57,124,71)(34,58,125,72)(35,59,126,61)(36,60,127,62), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,109)(22,110)(23,111)(24,112)(25,69)(26,70)(27,71)(28,72)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(73,96)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95) );

G=PermutationGroup([[(1,130,119),(2,131,120),(3,132,109),(4,121,110),(5,122,111),(6,123,112),(7,124,113),(8,125,114),(9,126,115),(10,127,116),(11,128,117),(12,129,118),(13,97,51),(14,98,52),(15,99,53),(16,100,54),(17,101,55),(18,102,56),(19,103,57),(20,104,58),(21,105,59),(22,106,60),(23,107,49),(24,108,50),(25,144,80),(26,133,81),(27,134,82),(28,135,83),(29,136,84),(30,137,73),(31,138,74),(32,139,75),(33,140,76),(34,141,77),(35,142,78),(36,143,79),(37,92,70),(38,93,71),(39,94,72),(40,95,61),(41,96,62),(42,85,63),(43,86,64),(44,87,65),(45,88,66),(46,89,67),(47,90,68),(48,91,69)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,87,82,97),(2,88,83,98),(3,89,84,99),(4,90,73,100),(5,91,74,101),(6,92,75,102),(7,93,76,103),(8,94,77,104),(9,95,78,105),(10,96,79,106),(11,85,80,107),(12,86,81,108),(13,119,44,134),(14,120,45,135),(15,109,46,136),(16,110,47,137),(17,111,48,138),(18,112,37,139),(19,113,38,140),(20,114,39,141),(21,115,40,142),(22,116,41,143),(23,117,42,144),(24,118,43,133),(25,49,128,63),(26,50,129,64),(27,51,130,65),(28,52,131,66),(29,53,132,67),(30,54,121,68),(31,55,122,69),(32,56,123,70),(33,57,124,71),(34,58,125,72),(35,59,126,61),(36,60,127,62)], [(1,103),(2,104),(3,105),(4,106),(5,107),(6,108),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,109),(22,110),(23,111),(24,112),(25,69),(26,70),(27,71),(28,72),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,121),(73,96),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,91),(81,92),(82,93),(83,94),(84,95)]])

180 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3H4A4B4C4D4E···4L6A···6X6Y···6BD12A···12AF12AG···12CR
order122222223···344444···46···66···612···1212···12
size111122221···111112···21···12···21···12···2

180 irreducible representations

dim111111111111112222
type+++++++
imageC1C2C2C2C2C2C3C4C6C6C6C6C6C12D4C4○D4C3×D4C3×C4○D4
kernelD4×C3×C12C122C32×C22⋊C4C32×C4⋊C4C2×C6×C12D4×C3×C6D4×C12D4×C32C4×C12C3×C22⋊C4C3×C4⋊C4C22×C12C6×D4C3×D4C3×C12C3×C6C12C6
# reps11212188816816864221616

Matrix representation of D4×C3×C12 in GL4(𝔽13) generated by

9000
0900
0030
0003
,
5000
0400
0080
0008
,
12000
01200
00111
0082
,
12000
0100
001111
0082
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,3,0,0,0,0,3],[5,0,0,0,0,4,0,0,0,0,8,0,0,0,0,8],[12,0,0,0,0,12,0,0,0,0,11,8,0,0,1,2],[12,0,0,0,0,1,0,0,0,0,11,8,0,0,11,2] >;

D4×C3×C12 in GAP, Magma, Sage, TeX

D_4\times C_3\times C_{12}
% in TeX

G:=Group("D4xC3xC12");
// GroupNames label

G:=SmallGroup(288,815);
// by ID

G=gap.SmallGroup(288,815);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1008,1037,772]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽